User’s Guide to the Beamer Class, Version 2.10

http://latex-beamer.sourceforge.net

Till Tantau
tantau@users.sourceforge.net

March 10, 2004

Contents
1 Introduction

1.1 Getting Started with the Beamer Class and WITEX/pdfI&TEX

1.2 Getting Started with the Beamer Class and Iy X

1.3 How to Read this User’s Guide

Installation and Compatibility

2.1 Imstallation L
2.1.1 Installing Prebundled Packages Like Debian or Red Hat Packages.
2.1.2 Temporary Installation L L
2.1.3 Installation in a texmf Tree e
2.1.4 Updating the Installation Lo
2.1.5 Testing the Installation

2.2 Compatibility with Other Packages

2.3 Emulation e e
2.3.1 Prosper and HA-Prosper. e
2.3.2 Seminar e e

Workflow

3.1 Step Zero: Know the Time Constraints vt v ..

3.2 Step One: Setup the Files o .

3.3 Step Two: Structure You Presentation L o

3.4 Step Three: Creating a PDF or PostScript File
3.4.1 Creating PDF 0 .
3.4.2 Creating PostScript L e

3.5 Step Four: Create Frames
3.5.1 Guidelines on What to Put ona Frame
3.5.2 Guidelines on Titles
3.5.3 Guidelines on the Body Text,
3.5.4 Guidelines on Graphics
3.5.5 Guidelines on Colors
3.5.6 Guidelines on Animations and Special Effects
3.5.7 Ways of Improving Compilation Speed

3.6 Step Five: Test Your Presentation

3.7 Step Six: Optionally Create a Handout or an Article Version

Frames and Overlays

4.1 The Concept of Overlay Specifications
4.1.1 The General Concept e
4.1.2 Mode Specifications L
4.1.3 Action Specifications
4.1.4 Incremental Specifications oL

4.2 Frameso e e e
4.2.1 Frame Creation e e e e

http://latex-beamer.sourceforge.net
mailto:tantau@users.sourceforge.net

4.2.2 Components of a Frame o

4.2.3 Restricting the Slides of a Frame o
4.2.4 Verbatim Commands and Listings inside Frames
4.3 Creating Overlays e e
4.3.1 The Pause Commands L e
4.3.2 Commands with Overlay Specifications
4.3.3 Environments with Overlay Specifications
4.3.4 Dynamically Changing Text
4.4 Making Commands and Environments Overlay-Specification-Aware

5 Structuring a Presentation

5.1 Global Structure of Presentations
5.2 Commands for Creating the Global Structure
5.2.1 Adding a Title Page e
5.2.2 Adding Sections and Subsections L
5.2.3 Adding Parts
5.2.4 Splitting a Course Into Lectures,
5.2.5 Adding a Table of Contents
5.2.6 Adding a Bibliography
5.2.7 Adding an Appendix
5.2.8 Adding Hyperlinks and Buttons oL
5.3 Navigation Bars and Symbols
5.3.1 Using the Navigation Bars o
5.3.2 Using the Navigation Symbols
5.4 Command for Creating the Local Structure
5.4.1 TItemizations, Enumerations, and Descriptions
5.4.2 Hilighting oL e
5.4.3 Block Environments
5.4.4 Theorem Environments
5.4.5 Framed Text e
5.4.6 Figures and Tables L
5.4.7 Splitting a Frame into Multiple Columns
5.4.8 Positioning Text and Graphics Absolutely
5.4.9 Verse, Quotations, Quotes e
5.4.10 Footnotes e e e

6 Graphics, Colors, Animations, and Special Effects

6.1 Graphics e
6.1.1 Including External Graphic Files oL
6.1.2 Inlining Graphic Commands L o

6.2 Color Management e
6.2.1 Colors of Main Text Elements
6.2.2 Average Background Color
6.2.3 Transparency Effects L

6.3 Animations e
6.3.1 Using an External Viewer
6.3.2 Animations Created by Showing Slides in Rapid Succession

6.4 Slide Transitions e e

7 Managing Non-Presentation Versions and Material

7.1 Creating Handouts e
7.2 Creating Transparencies ottt
7.3 Adding Notes e
7.3.1 Specifying Note Contents L
7.3.2 Specifying Which Notes and Frames Are Shown
7.3.3 Changing the Appearance of Notes
7.4 Creating an Article Version e
7.4.1 Starting the Article Mode
7.4.2 Workflow

7.4.3 Including Slides from the Presentation Version in the Article Version 74

7.5 Detailson Modes L 75
8 Customization 77
8.1 Fonts. e e 77
8.1.1 Serif Fonts and Sans-Serif Fonts L 0oL 77
8.1.2 Fonts in Mathematical Text 78
8.1.3 Font Families e e 79
8.1.4 Font Sizes L 79
8.1.5 Font Encodings 80

8.2 Margin Sizes L 80
8.3 Themes e e 81
8.4 Templates L 85
8.4.1 Imtroduction to Templates 85
8.4.2 Title Page e 86
8.4.3 Part Page L 87
8.4.4 Frames 88
8.4.5 Background e 88
8.4.6 Table of Contents e e 88
8.4.7 Bibliography 90
8.4.8 Frame Titles L 90
8.4.9 Head Lines and Foot Lines o 91
8.4.10 Side Bars e e 93
8.4.11 Buttons e e 94
8.4.12 Navigation Bars 95
8.4.13 Navigation Symbols L 96
8.4.14 Footnotes e 97
8.4.15 Captions e 98
8.4.16 Lists (Itemizations, Enumerations, Descriptions) 98
8.4.17 Hilighting Commands L e 100
8.4.18 Block Environments 100
8.4.19 Theorem Environments L L 101
8.4.20 Verse, Quotation and Quote Environments 103
8.4.21 Typesetting Notes L 103

9 Tips and (Dirty) Tricks 103
9.1 Piecewise Uncovering o v it e e e e e 104
9.1.1 Uncovering an Enumeration Piecewise oL, 104
9.1.2 Hilighting the Current Point in an Enumeration 104
9.1.3 Changing Symbol Before an Enumeration 105
9.1.4 Uncovering Tagged Formulas Piecewise 105
9.1.5 Uncovering a Table Linewise 106
9.1.6 Uncovering a Table Columnwise 106

10 License: The GNU Public License, Version 2 107
10.1 Preamble L e e e 107
10.2 Terms and Conditions For Copying, Distribution and Modification 107
10.3 No Warranty e 110

1 Introduction

This user’s guide explains the functionality of the BEAMER class. It is a IXTEX class that allows you to create
a presentation with a projector. It can also be used to create slides. It behaves similarly to other packages
like PROSPER, but has the advantage that it works together directly with pdflatex, but also with dvips.

1.1 Getting Started with the Beamer Class and BTEX /pdfBTEX

To use the BEAMER class together with latex or pdflatex, proceed as follows:

—_

. Specify beamer as document class instead of article.

2. Structure your IATEX text using section and subsection commands.
3. Place the text of the individual slides inside frame commands.
4

. Run pdflatex on the text (or latex, dvips, and ps2pdf).

The BEAMER class has several useful features: You don’t need any external programs to use it other
than pdflatex, but it works also with dvips. You can easily and intuitively create sophisticated overlays.
Finally, you can easily change the whole slide theme or only parts of it. The following code shows a typical
usage of the class.

\documentclass{beamer}
\usepackage{beamerthemesplit}

\title{Example Presentation Created with the Beamer Package}
\author{Till Tantau}
\date{\today}

\begin{document}
\frame{\titlepage}

\section*{Outline}
\frame{\tableofcontents}

\section{Introduction}
\subsection{Overview of the Beamer Class}
\frame

{

\frametitle{Features of the Beamer Class}

\begin{itemize}
\item<1-> Normal LaTeX class.
\item<2-> Easy overlays.
\item<3-> No external programs needed.
\end{itemize}

}

\end{document}

Run pdflatex on this code (twice) and then use, for example, the Acrobat Reader to present the resulting
.pdf file in a presentation. You can also, alternatively, use dvips; see Section 3.4.2 for details.

As can be seen, the text looks almost like a normal IXTEX text. The main difference is the usage of the
\frame command. This command takes one parameter, which is the text that should be shown on the frame.
Typically, the contents of a frame is shown on a single slide. However, in case you use overlay commands
inside a frame, a single frame command may produce several slides. An example is the last frame in the
above example. There, the \item commands are followed by overlay specifications like <1->, which means
“from slide 1 on.” Such a specification causes the item to be shown only on the specified slides of the frame
(see Section 4 for details). In the above example, a total of five slides are produced: a title page slide, an
outline slide, a slide showing only the first of the three items, a slide showing the first two of them, and a
slide showing all three items.

To structure your text, you can use the commands \section and \subsection. These commands will
not only create entries in the table of contents, but will also in the navigation bars.

1.2 Getting Started with the Beamer Class and LyX

Once installed (see Section 2), using the BEAMER class together with IyX is quite easy: You open a new
file and choose beamer as the document class. It is often even easier to choose “New from template” and to
pick a template from the directory beamer/lyx/templates.

To reproduce the example from the previous subsection in LyX, proceed as follows:

e The command \usepackage{beamerthemesplit} must be added to the preamble. You can edit the
preamble using Layout) Document) Preamble.

e Typeset the author and date the usual way, using the styles Author and Date. The title page will then
be created automatically.

e To insert the sections and subsections, use the usual Section and Subsection styles.

e To insert the frame containing the table of contents, insert a line of style BeginFrame. Since this frame
has no title, do not write anything on the line with style BeginFrame. Next, insert a line of style
Standard and use Insert) Insert TOC to insert the table of contents. Optionally, end the frame using
a line of style EndFrame (the following Section style automatically closes the frame).

e To create the last frame, start a new frame using the style BeginFrame. Write the frame title on the
line having this style.

e Use the Itemize style to create the itemized text.

e Add the overlay specifications (the texts like <1->) to the items by entering TEX-mode (press on the
little TEX icon) and writing <1->. This TEX text should be placed right at the beginning of the item.

e You must end this frame using the style EndFrame (sadly, the end of the document and also the
beginning of the appendix do not automatically end the last frame — whereas the start of a frame,
section, part, or subsection does).

Now use View) PDF to view the resulting presentation. On a slow machine, this may take a while. See
Section 3.5.7 for ways of speeding up the compilation.

1.3 How to Read this User’s Guide

This user guide is both intended as a tutorial and as a reference guide. If you have not yet installed the
package, please read Section 2 first. If you do not have much experience with preparing presentations,
Section 3 might be especially helpful. The later sections explain the basic usage of the beamer class as well
as advanced features. If you wish to adjust the way your presentations look (for example, if you wish to add a
default logo of your institution to every presentation in the future), please read the section on customization.

In this guide you will find the descriptions of all “public” commands provided by the beamer class. In
each such description, the described command, environment, or option is printed in red. Text shown in green
is optional and can be left out.

You will sometimes find one of the words BEAMER, ARTICLE, or LYX in blue in some description of a
command or environment. The first indicates that the description applies only to “normal beamer operation
in WTRX.” The word ARTICLE describes some behaviour that is special for the article mode. The word
LYX describes behaviour that is special when you use LyX to prepare your presentation.

2 Installation and Compatibility

2.1 Installation

To use the beamer class, you just need to put the files of the BEAMER package in a directory that is read
by TeX. To uninstall the class, simply remove these files once more. The same is true of the PGF package,
which you will also need.

Unfortunately, there are different ways of making TEX “aware” of the files in the BEAMER package. Which
way you should choose depends on how permanently you intend to use the class.

2.1.1 Installing Prebundled Packages Like Debian or Red Hat Packages

Currently, I'm not producing prebundled packages of beamer. There are some out-of-the-box Debian packages
and MikTEX packages around, but these are possibly outdated. Once beamer stabilizes, there will hopefully
also be easy-to-install packages.

LYX

LYX

2.1.2 Temporary Installation

If you only wish to install the beamer class for a quick appraisal, do the following: Obtain the latest source ver-
sion (ending .tar.gz) of the BEAMER package from http://sourceforge.net/projects/latex-beamer/
(most likely, you have already done this). Next, you also need at least version 0.60 of the PGF package, which
can be found at the same place. Finally, you need at least version 1.06 of the XCOLOR package, which can
also be found at that place (although the version on CTAN might be newer).

For usage with LyX, version 1.3.3 of LyX and higher are known to work. II have not tried earlier versions;
they might also work.

In all cases, the packages contain a bunch of files (for the BEAMER class, beamer.cls is one of these
files and happens to be the most important one, for the PGF package pgf.sty is the most important file).
Place all files in three directories. For example, ~/beamer/, ~/pgf/, and ~/xcolor/ would work fine for me.
Then setup the environment variable called TEXINPUTS to be the following string (how exactly this is done
depends on your operating system and shell):

.:"/beamer/base:~/beamer/art:~/beamer/themes:~/pgf:~/xcolor:

Naturally, if the TEXINPUTS variable is already defined differently, you should add the five directories to
the list. Do not forget to place a colon at the end (corresponding to an empty path), which will include all
standard directories.

2.1.3 Installation in a texmf Tree

For a more permanent installation, you can place the files of the BEAMER package and of the PGF package
(see the previous subsection on how to obtain them) in an appropriate texmf tree.

When you ask TEX to use a certain class or package, it usually looks for the necessary files in so-called
texmf trees. These trees are simply huge directories that contain these files. By default, TEX looks for files
in three different texmf trees:

e The root texmf tree, which is usually located at /usr/share/texmf/, c:\texmf\, or
c:\Program Files\TeXLive\texmf\.

e The local texmf tree, which is usually located at /usr/local/share/texmf/, c:\localtexmf\, or
c:\Program Files\TeXLive\texmf-local\.

e Your personal texmf tree, which is usually located in your home directory at ~/texmf/ or
~/Library/texmf/.

You should install the packages either in the local tree or in your personal tree, depending on whether
you have write access to the local tree. Installation in the root tree can cause problems, since an update of
the whole TEX installation will replace this whole tree.

Inside whatever texmf directory you have chosen, create the sub-sub-sub-directories

e texmf/tex/latex/beamer,
e texmf/tex/latex/pgf, and
e texmf/tex/latex/xcolor

and place all files in these three directories.
Finally, you need to rebuild TEX’s filename database. This done by running the command texhash or
mktexlsr (they are the same). In MikTEX, there is a menu option to do this.

For usage of the BEAMER class with IyX, you have to do all of the above. Then you also have to make
LyX aware of the file beamer/lyx/layouts/beamer.layout. To do so, link (or, not so good in case of later
updates, copy) this file to the directory .1lyx/layouts/ in your home directory. Then use LyX’s Reconfigure
command to make IyX aware of this file.

For a more detailed explanation of the standard installation process of packages, you might wish to
consult http://www.ctan.org/installationadvice/. However, note that the BEAMER package does not
come with a .ins file (simply skip that part).

http://sourceforge.net/projects/latex-beamer/
http://www.ctan.org/installationadvice/

2.1.4 Updating the Installation

To update your installation from a previous version, simply replace everything in the directories like
texmf/tex/latex/beamer with the files of the new version. The easiest way to do this is to first delete
the old version and then proceed as described above. Sometimes, there are changes in the syntax of certain
command from version to version. If things no longer work that used to work, you wish to have a look at
the release notes and at the change log.

2.1.5 Testing the Installation

To test your installation, copy the file beamerexamplel.tex from the examples subdirectory to some place
where you usually create presentations. Then run the command pdflatex several times on the file and check
whether the resulting beamerexamplel.pdf looks correct. If so, you are all set.

LYX To test the LyX installation, try creating a new file from the template beamerpresentation.lyx, which is
located in the directory beamer/lyx/templates.

2.2 Compatibility with Other Packages

When using certain packages together with the beamer class, extra options or precautions may be necessary.

\usepackage{amsthm}

This package is automatically loaded since BEAMER uses it for typesetting theorems. If you do not wish
it to be loaded, which can be necessary especially in article mode if the package is incompatible with
the document class, you can use the class option noamsthm to suppress its loading. See Section 5.4.4 for
more details.

\usepackage [french] {babel}

When using the French style, certain features that clash with the functionality of the beamer class will
be turned off. For example, enumerations are still produced the way the theme dictates, not the way
the French style does. Also, the characters : and ! will not be a active characters. This means, that
the little space that is inserted before them in the french style is not inserted. You have to do this “by
hand.”

ARTICLE To make the characters : and ! active in article mode, pass the option activeospeccharacters to
the package beamerbasearticle. However, this may lead to problems with overlay specifications.

\usepackage [spanish] {babel}
BEAMER When using the Spanish style, certain features that clash with the functionality of the beamer class will
be turned off. In particular, the special behaviour of the pointed brackets < and > is deactivated.

ARTICLE To make the characters < and > active in article mode, pass the option activeospeccharacters to
the package beamerbasearticle. As for the french package, this may lead to problems with overlay
specifications.

\usepackage{color}

BEAMER The color package is automatically loaded by beamer.cls. This makes it impossible to pass options
to color in the preamble of your document. To pass a (list of options) to color, you must use the
following class option:

\documentclass [color=(list of options)]{beamer}

Causes the (list of options) to be passed on to the color package. If the (list of options) contains
more than one option you must enclose it in curly brackets.

ARTICLE The color package is not loaded automatically if beamerbasearticle is loaded with the noxcolor

option.

\usepackage{CJK}

BEAMER When using the CJK package for using Asian fonts, you must use the class option CJK. See
beamerexample4d.tex for an example.

\usepackage{deluxetable}

BEAMER The caption generation facilities of deluxetable are deactivated. Instead, the caption template is used.

\usepackage{enumerate}

ARTICLE This package is loaded automatically in the presentation modes, but not in the article mode. If you
use its features, you have to load the package “by hand” in the article mode.

\usepackage [T1]{fontenc}

Use this option only with fonts that have outline fonts available in the T1 encoding like Times or the
lmodern fonts. In a standard installation the standard Computer Modern fonts (the fonts Donald Knuth
originally designed and which are used by default) are not available in the T1 encoding. Using this
option with them will result in very poor rendering of your presentation when viewed with PDF viewer
applications like Acrobat or xpdf. To use the Computer Modern fonts with the T1 encoding, use the
package 1modern. See also Section 8.1.5.

\usepackage{fourier}

The package switches to a T1 encoding, but it does not redefine all fonts such that outline fonts (non-
bitmapped fonts) are used by default. For example, the sans-serif text and the typewriter text are not
replaced. To use outline fonts for these, write \usepackage{lmodern} before including the fourier
package.

\usepackage{hyperref}

BEAMER The hyperref package is automatically loaded by beamer.cls and certain options are setup. In order
pass additional options to hyperref or to override options, you can use the following class option:

\documentclass [hyperref=(list of options)]{beamer}
Causes the (list of options) to be passed on to the hyperref package.

Example: \documentclass [hyperref={bookmarks=false}]{beamer}

Alternatively, you can also use the \hypersetup command.

ARTICLE In the article version, you must include hyperref manually if you want to use it. It is not included
automatically.

\usepackage [utf8]{inputenc}

BEAMER When using Unicode, you may wish to use one of the following class options:

\documentclass[ucs] {beamer}

Loads the package ucs and passes the correct Unicode options to hyperref. Also, it preloads the
Unicode code pages zero and one.

\documentclass [utf8] {beamer}
Same as the option ucs, but also sets the input encoding to ut£8. You could also use the option
ucs and say \usepackage [utf8] {inputenc} in the preamble.

If you use a Unicode character outside the first two code pages (which includes the Latin alphabet
and the extended Latin alphabet) in a section or subsection heading, you have to use the command
\PreloadUnicodePage{(code page)} to give ucs a chance to preload these code pages. You will know
that a character has not been preloaded, if you get a message like “Please insert into preamble.” The
code page of a character is given by the unicode number of the character divided by 256.

\usepackage{listings}

BEAMER Note that you must treat 1stlisting environments exactly the same way as you would treat verbatim
environments. When using \defverbatim that contains a colored 1stlisting, use the colored option
of \defverbatim.

\usepackage{(professional font package)}

BEAMER If you use a professional font package, BEAMER’s internal redefinition of how variables are typeset may
interfere with the font package’s superior way of typesetting them. In this case, you should use the class
option professionalfont to suppress any font substitution. See Section 8.1.3 for details.

\usepackage{pstricks}

You should add the option xcolor=pst to make xcolor aware of the fact that you are using pstricks.

\usepackage{textpos}

BEAMER BEAMER automatically installs a white background behind everything, unless you install a different
background template. Because of this, you must use the overlay option when using textpos, so that
it will place boxes before everything. Alternatively, you can install an empty background template, but
this may result in an incorrect display in certain situtations with older versions of the Acrobat Reader.

\usepackage{ucs}

See \usepackage [utf8]{inputenc}.

\usepackage{xcolor}

BEAMER The xcolor package is automatically loaded by beamer.cls. The same applies as to color.

\documentclass[xcolor=(list of options)]{beamer}

Causes the (list of options) to be passed on to the xcolor package.

When using BEAMER together with the pstricks package, be sure to pass the xcolor=pst option to
BEAMER (and hence to xcolor).

ARTICLE The color package is not loaded automatically if beamerbasearticle is loaded with the noxcolor
option.

2.3 Emulation

BEAMER is a powerful class. In some ways it is more powerful than other classes around, in others it is less
powerful or harder to use. If BEAMER implements all or most of the features some other class also offers,
albeit under a different name, it is possible to emulate that class using BEAMER. Such an emulation is not
a perfect substitute for the original (emulations seldomly are), but it can help speed up porting since parts
of old presentations can simply be copied verbatim, without having to worry about the subtle differences in
syntax.

An useful effect of using an emulation layer is that you get access to all the features of BEAMER while
using the syntax of another class. In particular, you can still use the article mode to create a nice article
version from a PROSPER talk.

2.3.1 Prosper and HA-Prosper

The package beamerprosper maps the commands of the PROSPER package, developped by Frédéric Goualard,
to BEAMER commands. Also, some commands of the HA-PROSPER package, developped by Hendri Adriaens,
are mapped to BEAMER commands. These mappings cannot perfectly emulate all of Prosper! Rather, these
mappings are intended as an aide when porting presentations created using PROSPER to BEAMER. No styles
are implemented that mimick Prosper styles. Rather, the normal BEAMER themes must be used (although,
one could implement BEAMER themes that mimicks existing PROSPER styles; I have not done that and do
not intend to).
The workflow for the migration is the following;:

1. Replace the document class prosper by beamer. Most options passed to prosper do not apply to
beamer and should be omitted.

2. Add a \usepackage{beamerprosper} to start the emulation.

3. If you are using HA-PROSPER, delete the \usepackage{HA-prosper}. You may wish to add the op-
tion framesassubsections to beamerprosper, though I do not recommend it (use the \subsection
command instead; it gives you more fine-grained control).

4. Possibly add commands to install themes and templates.

5. It may be necessary to adjust the content of commands like \title or \author. Note that in PROSPER
the \email command is given outside the \author command, whereas in BEAMER and also in HA-
PROSPER it is given inside.

6. In the main text, you will almost surely have to adjust usages of \includegraphics. If you use

pdfIATEX to typeset the presentation, than you cannot include PostScript file. You should convert
them to .pdf or to .png and adjust any usage of \includegraphics accordingly.

7. When starting to change things, you can use all of BEAMER’S commands and even mix them with

PROSPER commands.

An example can be found in the file beamerexample-haprosper.tex. Note that this file, except for the

changes at the beginning, is due to Hendri Adriaens.

There are, unfortunately, quite a few places where you may run into problems:

e In BEAMER, the command \PDForPS will do exactly what the name suggests: insert the first argument

when run by pdflatex, insert the second argument when run by latex. However, in PROSPER, the
code inserted for the PDF case is acutally PostScript code, which is only later converted to PDF by
some external program. You will need to adjust this PostScript code such that it works with pdflatex
(which is not always possible).

If you used fine-grained spacing commands, like adding a little horizontal skip here and a big negative
vertical skip there, the typesetting of the text may be poor. It may be a good idea to just remove
these spacing commands.

If you use pstricks commands, you will either have to stick to using latex and dvips or will have to
work around them using, for example, pgf. Porting lot’s of pstricks code is bound to be difficult, if
you wish to switch over to pdflatex, so be warned.

If the file cannot be compiled because some PROSPER command is not implemented, you will have to
delete this command and try to mimick its behaviour using some BEAMER command.

\usepackage{beamerprosper}

ARTICLE

Include this package in a beamer presentation to get access to PROSPER commands. Use beamer as the
document class, not prosper. Most of the options passed to the class prosper make no sense in beamer,
so just delete them.

This package takes the following options:

e framesassubsections causes each frame to create its own subsection with the frame title as
subsection name. This behaviour mimicks HA-PROSPER’s behaviour. In a long talk this will create
way too many subsections.

The framesassubsections option has no effect in article mode.

Ezample: Consider the following original PROSPER file (adapted from an example by Hendri Adriaens):

\documentclass [pdf]{prosper}
\usepackage [toc,highlight ,HA,notes,portrait,hlsections] {HA-prosper}

\title{Example for the HA-prosper package}
\subtitle{A package for use with prosper}

\author{Hendri Adriaens}

\DefaultTransition{Wipe}

\TitleSlideNav{FullScreen}

\NormalSlideNav{ShowBookmarks}
\LeftFoot{\href{http://center.uvt.nl/phd_stud/adriaens}{Hendri Adriaens}, \today}
\RightFoot{Example for the HA-prosper packagel}

\begin{document}
\maketitle

\begin{slide}{Introduction}

\begin{itemize}

\item Welcome to the example for the HA-prosper package.

\item This example demonstrates some of the possibilities of HA-prosper.
\item See the style-specific examples for a demonstration of

10

features implemented by a style.
\end{itemize}
\end{slide}

\overlays{2}{

\begin{slide}{Numbering and overlays}
\begin{itemstep}

\item This overlay contains an equation:
\begin{equation}

\label{eq:1}

(a+b) "n=\sum_{k=0}"n\left (\begin{array}{1}n\\k\end{array}\right)a~{n-k}b"k
\end{equation}

\item It is equation number~\ref{eq:1}.
\end{itemstep}

\end{slide}

}

\begin{notes}{Notes for these slides}
My notes for these slides.
\end{notes}

\end{document}

To port this example to BEAMER, the first two lines should be replaced as follows:

\documentclass{beamer}
\usepackage{beamerprosper}

Everything else can stay the same. You can now run, for example, pdfIATEX on the file to get a
BEAMER presentation with overlays. Adding the notes option will also show the note. Certain com-
mands, like \LeftFoot, are ignored. You can change the theme using the usual commands; for example
beamerthemesidebar is quite “near” to Adriaens’ original theme. You can also use all normal BEAMER
commands and concepts, like overlay-specifications, in the file. You can also create an article version
by adding the class option class=article and including the package beamerbasearticle.

In the following, the effect of PROSPER commands in BEAMER are listed.

\subtitle{{title)}
Adds a subtitle by adding a new line to an existing title with the given (title) typeset in a smaller font.

\email{(texrt)}

Simply typesets its argument in typewriter text. Should hence be given inside the \author command.

\institution{(text)}

This command is mapped to BEAMER’s \institute command if given outside the \author command,
otherwise it typesets its argument in a smaller font.

\Logo ({z), (y)){{logo text)}
This is mapped to \logo{(logo text)}. The coordinates are ignored.

\begin{slides} [{options)]1{(frame title)}
(environment contents)
\end{slides}

Inserts a frame with the containsverbatim option set. The (frame title) will be enclosed in a
\frametitle command.

The following (options) may be given:
e trans=(prosper transition) installs the specified (prosper transition) as the transition effect when
showing the slide.
e (prosper transition) has the same effect as trans=(prosper transition).

e toc=(entry) overrides the subsection table of contents entry created by this slide by (entry). Note
that a subsection entry is create for a slide only if the framesassubsections options is specified.

11

e template=(lext) is ignored.

Ezample: The following two texts have the same effect:

\begin{slide}[trans=Glitter,toc=short]{A Title}
Hi!

\end{slide}

and

\subsection{short} % omitted, if framesassubsections is not specified
\frame [containsverbatim]
{

\transglitter

\frametitle{A Title}
Hi!
}

\overlays{{number)}{(slide environment)}

This will put the (slide environment) into a frame that does not have the containsverbatim option
and which can hence contain overlayed text. The (number) is ignored since the number of necessary
overlays is computed automatically by BEAMER.

Example: The following code fragments have the same effect:

\overlays{2}{
\begin{slide}{A Title}
\begin{itemstep}
\item Hi!
\item Ho!
\end{itemstep}
\end{slide}}

and

\subsection{A Titlel} ’, omitted, if framesassubsections is not specified
\frame

{
\frametitle{A Title}
\begin{itemstep}
\item Hi!
\item Ho!
\end{itemstep}

}

\fromSlide{(slide number)}{{text)}

This is mapped to \uncover<(slide number)->{(text)}.

\fromSlide*{(slide number)}{(text)}
This is mapped to \only<(slide number)->{(text)}.

\onlySlide{(slide number)}{(text)}

This is mapped to \uncover<(slide number)>{(text)}.

\onlySlide*{(slide number)}{(text)}
This is mapped to \only<(slide number)>{(text)}.

\untilSlide{(slide number)}{(text)}

This is mapped to \uncover<-{slide number)>{(text)}.

\untilsSlidex{(slide number)}{(text)}
This is mapped to \only<-(slide number)>{(text)}.

12

\FromSlide{(slide number)}

This is mapped to \onslide<(slide number)->.

\OnlySlide{(slide number)}

This is mapped to \onslide<(slide number)>.

\UntilSlide{(slide number)}

This is mapped to \onslide<-{slide number)>.

\slideCaption{(text)}
This is mapped to \date{(text)}.

\fontTitle{(text)}
Simply inserts (text).

\fontText{(tert)}
Simply inserts (text).

\PDFtransition{(prosper transition)}
Maps the (prosper transition) to an appropriate \transxxxx command.
\begin{Itemize}

(environment contents)
\end{Itemize}

This is mapped to itemize.
\begin{itemstep}

(environment contents)
\end{itemstep}

This is mapped to itemize with the option [<+->].
\begin{enumstep}

(environment contents)
\end{enumstep}

This is mapped to enumerate with the option [<+->].

\hiddenitem
This is mapped to \addtocounter{beamerpauses}{1}.

\prosperpart [{options)]{(text)}

This command has the same effect as PROSPER’s \part command. BEAMER’s normal \part command
retains its normal sematics. Thus, you might wish to replace all occurences of \part by \prosperpart.

\tsection*{(section name)}

Creates a section names (section name). The star, if present, is ignored.
\tsectionandpart*{(part text)}
Mapped to a \section command followed by a \prosperpart command.
ARTICLE In article mode, no part page is added.

\dualslide [(z)] [{y)] [{z)]{{options)H {left column)}I{({right column)}

This command is mapped to a columns environment. The (left column) text is shown in the left column,
the (right column) text is shown in the right column. The options (z), (y), and (z) are ignored. Also,
all options are ignored, except for 1colwidth= and rcolwidth=. These set the width of the left or right
column, respectively.

13

\PDForPS{(PostScript text)}(PDF text)}

Inserts eight the (PostScript text) or the (PDF text), depending on whether latex or pdflatex is used.
When porting, the (PDF text) will most likely be incorrect, since in PROSPER the (PDF text) is actually
PostScript text that is later transformed to PDF by some external program.

If the (PDF text) contains an \includegraphics command (which is its usual use), you should change
the name of the graphic file that is included to a name ending .pdf, .png, or . jpg. Typically, you will
have to convert you graphic to this format.

\onlyInPDF({PDF text)

The (PDF text) is only included if pdflatex is used. The same as for the command \PDForPS applies
here.

\onlyInPS(PS text)

The (PS text) is only included if latex is used.

\begin{notes}{(title)}
(environment contents)
\end{notes}

Mapped to \note{\textbf{(title)}(environment contents)} (more or less).

The following commands are parsed by BEAMER, but have no effect:

\myitem,
\FontTitle,
\FontText,
\ColorFoot,
\DefaultTransition,
\NoFrenchBabelItemize,
\TitleSlideNav,
\NormalSlideNav,
\HAPsetup,
\LeftFoot, and
\RightFoot.

2.3.2 Seminar

The

package beamerseminar maps a subset of the commands of the SEMINAR package to BEAMER. As for

PROSPER, the emulation cannot be perfect. For example, no portrait slides are supported, no automatic
page braking, the framing of slides is not emulated. Unfortunately, for all frames (slide environments) that
contain overlays, you have to put the environment into a \frame “by hand” and must remove all occurences
of \newslide inside the environment by closing the slide and opening a new one (and them putting these

into

\frame commands).

The workflow for the migration is the following:

1.

Replace the document class seminar by beamer. Most options passed to prosper do not ap-
ply to beamer and should be omitted. If the presentation is mixed with normal text, add the
ignorenonframetext option and place every slide environment inside a \frame since BEAMER will
not recognize the \begin{slide} as the beginning of a frame.

Add a \usepackage{beamerseminar} to start the emulation. Add the option accumulate if you wish
to create a presentation to be held with a video projector.

. Possibly add commands to install themes and templates.

Remove most commands in the preamble having to do with page and slide styles. They do not apply
to beamer.

. If a \newslide command is used in a slide (or similarly slide*) environment that contains an overlay,

you must replace it by a closing \end{slide} and an opening \begin{slide}.

14

6. Next, for each slide or slide* environment that contains an overlay, you must place a \frame
command around it. You can remove the environment, unless you use the accumulate option.

7. If you use pdfIATEX to typeset the presentation, than you cannot include PostScript file. You should
convert them to .pdf or to .png and adjust any usage of \includegraphics accordingly.

8. When starting to change things, you can use all of BEAMER’s commands and even mix them with
PROSPER commands.

An example can be found in the file beamerexample-seminar. tex.
There are, unfortunately, numerous places where you may run into problems:

e The whole note management of seminar is so different from beamer’s, that you will have to edit notes
“by hand.” In particular, commands like \ifslidesonly and \ifslide may not do exactly what you
expect.

e If you use pstricks commands, you will either have to stick to using latex and dvips or will have to
work around them using, for example, pgf. Porting lot’s of pstricks code is bound to be difficult, if
you wish to switch over to pdflatex, so be warned.

e If the file cannot be compiled because some SEMINAR command is not implemented, you will have to
delete this command and try to mimick its behaviour using some BEAMER command.

\usepackage{beamerseminar}

Include this package in a beamer presentation to get access to SEMINAR commands. Use beamer as the
document class, not seminar. Most of the options passed to the class seminar make no sense in beamer,
so just delete them.

This package takes the following options:

e accumulate causes overlays to be accumulated. The original behaviour of the SEMINAR package is
that in each overlay only the really “new” part of the overlay is shown. This makes sense, if you
really print out the overlays on transparencies and then really stack overlays on top of each other.
For a presentation with a video projector, you rather want to present an “accumulated” version of
the overlays. This is what this option does: When the new material of the ith overlay is shown,
the material of all previous overlays is also shown.

Example: The following example is an extract of beamerexample-seminar.tex:

\documentclass[ignorenonframetext] {beamer}
\usepackage [accumulated] {beamerseminar}
\usepackage{beamerthemeclassic}

\title{Example for seminar.sty}
\author{Policarpa Salabarrieta}
\date{July 21, 1991}

\newcommand{\sref}[1]{SLIDE \ref{#1}}

CHANGED: different definition of \heading
\newcommand{\heading}[1]{\begin{center}\large\bf #1\end{centerl}}
\let\heading=\frametitle

CHANGED: Commented:
\newpagestyle{MH}/,

{University of Guaduas, March 13, 1998\hfil\thepage}{}
\pagestyle{MH}

\begin{document}
CHANGED: Added \frame
\frame{

\maketitle
}

15

This is a lot of gobbledy-gook intended only to illustrate some of the
features of seminar.sty.

CHANGED: Added \frame
\frameq{
\begin{slide}\label{too_much}’
\begin{center}
\large\bf
Information overload = ‘‘Too much’’ information
\end{center}
\smallskip

\begin{verse} \bf\tt
You have 134 unread messages:\\
Do you want to read them now?
\end{verse}

\begin{enumerate}
{\overlay2
\item People {\overlayl cannot process all} the information they receive.}
\item People {\em should} receive less information.

\end{enumerate}

\end{slide}

}

\end{document}

You can use all normal BEAMER commands and concepts, like overlay-specifications, in the file. You can
also create an article version by adding the class option class=article and including the package
beamerbasearticle.

In the following, the effect of SEMINAR commands in BEAMER are listed.

\overlay{{number)}

Shows the material till the end of the current TEX group only on overlay numbered (number) + 1 or, if
the accumulate option is given, from that overlay on. Usages of this command may be nested (as in
SEMINAR). If an \overlay command is given inside another, it temporarily “overrules” the outer one
as demonstrated in the following example, where it is assumed, that the accumulate option is given.

Ezxample:

\frame{
\begin{slide}
This is shown from the first slide on.
{\overlay{2}
This is shown from the third slide on.
{\overlay{1}
This is shown from the second slide on.
¥
This is shown once more from the third slide on.

}
\end{slide}
}

\begin{slidex}
(environment contents)
\end{slidex}

Mainly installs an \overlay{0} around the (environment contents). If the accumulate option is given,
this has no effect, but otherwise it will cause the main text of the slide to be shown only on the first
slide. This is useful if you really wish to physically place slides on top of each other.

The starred version does the same as the nonstarred one.

If this command is not issued inside a \frame, it sets up a frame with the containsverbatim option
set. Thus, this frame will contain only a single slide.

16

FExample:

\begin{slide}
Some text.
\end{slide}

\frame{
\begin{slide}
Some text. And an {\overlay{i} overlay}.
\end{slide}
}
\red

Mapped to \color{red}.

\blue
Mapped to \color{blue}.

\green

Mapped to \color{green}.

\ifslide

True in the presentation modes, false in the article mode.

\ifslidesonly

Same as \ifslide.

\ifarticle

False in the presentation modes, true in the article mode.

\ifportrait
Always false.

The following commands are parsed by BEAMER, but have no effect:

e \ptsize.

3 Workflow

This section presents a possible workflow for creating a beamer presentation and possibly a handout to go
along with it. Technical questions are addressed, like which programs to call with which parameters, and
hints are given on how to create a presentation. If you have already created numerous presentations, you
may wish to skip the first of the following steps and only have a look at how to convert the .tex file into a
.pdf or .ps file.

3.1 Step Zero: Know the Time Constraints

When you start to create a presentation, the very first thing you should worry about is the amount of time
you have for your presentation. Depending on the occasion, this can be anything between 2 minutes and
two hours. A simple rule for the number of frames is that you should have at most one frame per minute.

In most situations, you will have less time for your presentation that you would like. Do not try to
squeeze more into a presentation than time allows for. No matter how important some detail seems to you,
it is better to leave it out, but get the main message across, than getting neither the main message nor the
detail across.

In many situations, a quick appraisal of how much time you have will show that you won’t be able to
mention certain details. Knowing this can save you hours of work on preparing slides that you would have
to remove later anyway.

17

BEAMER

LYX

BEAMER

3.2 Step One: Setup the Files

It is advisable that you create a folder for each presentation. Even though your presentation will usually
reside in a single file, TEX produces so many extra files that things can easily get very confusing otherwise.
The folder’s name should ideally start with the date of your talk in ISO format (like 2003-12-25 for a
Christmas talk), followed by some reminder text of what the talk is all about. Putting the date at the front
in this format causes your presentation folders to be listed nicely when you have several of them residing in
one directory. If you use an extra directory for each presentation, you can call your main file main.tex.

To create an initial main.tex file for your talk, copy an existing file (like the file beamerexamplel.tex
that comes along with the contribution) and delete everything that is not going to be part of your talk.
Adjust the \author and other fields as appropriate.

If you wish your talk to reside in the same file as some different, non-presentation article version of your
text, it is advisable to setup a more elaborate file scheme. See Section 7.4.2 for details.

You can either open a new file and then select beamer as the document class or you say “New from template”
and then use a template from the directory beamer/lyx/templates.

3.3 Step Two: Structure You Presentation

With the time constraints in mind, make a mental inventory of the things you can reasonably talk about
within the time available. Then categorize the inventory into sections and subsections. For very long talks
(like a 90 minute lecture), you might also divide your talk into independent parts (like a “review of the
previous lecture part” and a “main part”). Put \section and \subsection commands into the (more or
less empty) main file. Do not create any frames until you have a first working version of a possible table of
contents. Do not feel afraid to change it later on as you work on the talk.

You should not use more than four sections and not less than two per part. Even four sections are usually
too much, unless they follow a very easy pattern. Five and more sections are simply too hard to remember
for the audience. After all, when you present the table of contents, the audience will not yet really be able
to grasp the importance and relevance of the different sections and will most likely have forgotten them by
the time you reach them.

Ideally, a table of contents should be understandable by itself. In particular, it should be comprehensible
before someone has heard your talk. Keep section and subsection titles self-explaining. Note that each part
has its own table of contents.

Both the sections and the subsections should follow a logical pattern. Begin with an explanation of what
your talk is all about. (Do not assume that everyone knows this. The Ignorant Audience Law states: The
audience always knows less than you think it should know, even if you take the Ignorant Audience Law into
account.) Then explain what you or someone else has found out concerning the subject matter. Always
conclude your talk with a summary that repeats the main message of the talk in a short and simple way.
People pay most attention at the beginning and at the end of talks. The summary is your “second chance”
to get across a message.

You can also add an appendix part using the \appendix command. Put everything into this part that
you do not actually intend to talk about, but that might come in handy when questions are asked.

3.4 Step Three: Creating a PDF or PostScript File

Once a first version of the structure is finished, you should create a first PDF or PostScript file of your (still
empty) talk. This file will only contain the title page and the table of contents. The file might look like this:

\documentclass{beamer}
% This is the file main.tex

\usepackage{beamerthemesplit}

\title{Example Presentation Created with the Beamer Package}
\author{Till Tantau}

\date{\today}

\begin{document}

\frame{\titlepage}

18

LYX

BEAMER

LYX

BEAMER

\section*{Outline}
\frame{\tableofcontents}

\section{Introduction}
\subsection{Overview of the Beamer Class}
\subsection{Overview of Similar Classes}

\section{Usage}
\subsection{...}
\subsection{...}

\section{Examples}
\subsection{...}
\subsection{...}

\end{document}

Use “View” to check whether the presentation compiles fine. Note that you must put the table of contents
inside a frame, but that the title page is created automatically.

3.4.1 Creating PDF

To create a PDF version of this file, run the program pdflatex on main.tex at least twice. Your need to run
it twice, so that TEX can create the table of contents. (It may even be necessary to run it more often since
all sorts of auxiliary files are created.) In the following example, the greater-than-sign is the prompt.

> pdflatex main.tex

. lots of output ...
> pdflatex main.tex

. lots of output ...

You can next use a program like the Acrobat Reader or xpdf to view the resulting presentation.
> acroread main.pdf

When printing a presentation using Acrobat, make sure that the option “expand small pages to paper
size” in the printer dialog is enabled. This is necessary, because slides are only 128mm times 96mm.

To put several slides onto one page (useful for the handout version) or to enlarge the slides, you can use
the program pdfnup. Also, many commercial programs can perform this task. If you put several slides on
one page and if these slides normally have a white background, it may be useful to write the following in
your preamble:

\mode<handout>{\beamertemplatesolidbackgroundcolor{black!5}}

This will cause the slides of the the handout version to have a very light gray background. This makes
it easy to discern the slides’ border if several slides are put on one page.

Choose “View pdf” to view your presentation.

3.4.2 Creating PostScript

To create a PostScript version, you should first ascertain that the HYPERREF package (which is automatically
loaded by the BEAMER class) uses the option dvips or some compatible option, see the documentation of the
HYPERREF package for details. Whether this is the case depends on the contents of your local hyperref.cfg
file. You can enforce the usage of this option by passing dvips or a compatible option to the BEAMER class
(write \documentclass [dvips]{beamer}), which will pass this option on to the HYPERREF package.

You can then run latex twice, followed by dvips.

> latex main.tex

... lots of output ...
> latex main.tex

... lots of output ...
> dvips -P pdf main.dvi

19

LYX

LYX

The option (-P pdf) tells dvips to use Type 1 outline fonts instead of the usual Type 3 bitmap fonts.
You may wish to omit this option if there is a problem with it.
If you wish each slide to completely fill a letter-sized page, use the following commands instead:

> dvips -P pdf -tletter main.dvi -o main.temp.ps
> psnup -1 -W128mm -H96mm -pletter main.temp.ps main.ps

For A4-sized paper, use:

> dvips -P pdf -ta4 main.dvi -o main.temp.ps
> psnup -1 -W128mm -H96mm -pad4 main.temp.ps main.ps

In order to create a white margin around the whole page (which is sometimes useful for printing), add
the option -m 1cm to the options of psnup.

To put two or four slides on one page, use -2, respectively -4 instead of -1 as the first parameter for
psnup. In this case, you may wish to add the option -b 1cm to add a bit of space around the individual
slides. The same trick as for the PDF-version can be used to make the borders of slides more pronounced in
the handout version.

You can convert a PostScript file to a pdf file using

> ps2pdf main.ps main.pdf
Use “View Postscript” to view the PostScript version.

3.5 Step Four: Create Frames

Once the table of contents looks satisfactory, start creating frames for your presentation. In the following,
some guidelines that I stick to are given on what to put on slides and what not to put. You can certainly
ignore any of these guideline, but you should be aware of it when you ignore a rule and you should be able
to justify it to yourself.

To create a frame, use the style “BeginFrame”. The frame title is given on the line of this style. The frame
ends automatically with the start of the next frame, with a section or subsection command, and with an
empyt line in the sylte “EndFrame”. Note that the last frame of your presentation must be ended using
“EndFrame” and that the last frame before the appendix must be ended this way.

3.5.1 Guidelines on What to Put on a Frame

o A frame with too little on it is better than a frame with too much on it.

e Do not assume that everyone in the audience is an expert on the subject matter. (Remember the
Ignorant Audience Law.) Even if the people listening to you should be experts, they may last have
heard about things you consider obvious several years ago. You should always have the time for a
quick reminder of what exactly a “semantical complexity class” or an “w-complete partial ordering”
is.

e Never put anything on a slide that you are not going to explain during the talk, not even to impress
anyone with how complicated your subject matter really is. However, you may explain things that are
not on a slide.

e Keep it simple. Typically, your audience will see a slide for less than 50 seconds. They will not have
the time to puzzle through long sentences or complicated formulas.

3.5.2 Guidelines on Titles

e Put a title on each frame. The title explains the contents of the frame to people who did not follow
all details on the slide.

e The title should really ezplain things, not just give a cryptic summary that cannot be understood
unless one has understood the whole slide. For example, a title like “The Poset” will have everyone
puzzled what this slide might be about. Titles like “Review of the Definition of Partially Ordered Sets
(Posets)” or “A Partial Ordering on the Columns of the Genotype Matrix” are much more informative.

20

Ideally, titles on consecutive frames should “tell a story” all by themselves.

[P}

In English, you should either always capitalize all words in a frame title except for words like “a” or
“the” (as in a title), or you always use the normal lowercase letters. Do not mix this; stick to one
rule. The same is true for block titles. For example, do not use titles like “A short Review of Turing
machines.” Either use “A Short Review of Turing Machines.” or “A short review of Turing machines.”
(Turing is still spelled with a capital letter since it is a name).

In English, the title of the whole document should be capitalized, regardless of whether you capitalize
anything else.

In German and other languages that have lots of capitalized words, always use the correct upper-
/lowercase letters. Never capitalize anything in addition to what is usually capitalized.

3.5.3 Guidelines on the Body Text

Never use a smaller font size to “squeeze more on a frame.”
Prefer enumerations and itemize environments over plain text. Do not use long sentences.
Do not hyphenate words. If absolutely necessary, hyphenate words “by hand,” using the command \-.

Break lines “by hand” using the command \\. Do not rely on automatic line breaking. Break where
there is a logical pause. For example, good breaks in “the tape alphabet is larger than the input
[139%2)

alphabet” are before “is” and before the second “the.” Bad breaks are before either “alphabet” and
before “larger.”

Text and numbers in figures should have the same size as normal text. Illegible numbers on axes
usually ruin a chart and its message.

3.5.4 Guidelines on Graphics

Put (at least) one graphic on each slide, whenever possible. Visualizations help an audience enormously.
Usually, place graphics to the left of the text. (Use the columns environment.)

Graphics should have the same typographic parameters as the text: Use the same fonts (at the same
size) in graphics as in the main text. A small dot in a graphic should have exactly the same size as a
small dot in a text. The line width should be the same as the stroke width used in creating the glyphs
of the font. For example, an 11pt non-bold Computer Modern font has a stroke width of 0.4pt.

While bitmap graphics, like photos, can be much more colorful than the rest of the text, vector graphics
should follow the same “color logic” as the main text (like black = normal lines, red = hilighted parts,
green = examples, blue = structure).

Like text, you should explain everything that is shown on a graphic. Unexplained details make the
audience puzzle whether this was something important that they have missed. Be careful when im-
porting graphics from a paper or some other source. They usually have much more detail than you
will be able to explain.

For technical hints on how to create graphics, see Section 6.1.

3.5.5 Guidelines on Colors

Use colors sparsely. The prepared themes are already quite colorful (blue = structure, red = alert,
green = example). If you add more colors, you should have a very good reason.

Be careful when using bright colors on white background, especially when using green. What looks good
on your monitor may look bad during a presentation due to the different ways monitors, beamers, and
printers reproduce colors. Add lots of black to pure colors when you use them on bright backgrounds.

Maximize contrast. Normal text should be black on white or at least something very dark on something
very bright. Never do things like “light green text on not-so-light green background.”

21

e Background shadings decrease the legibility without increasing the information content. Do not add a
background shading just because it “somehow looks nicer.” In the examples that come along with the
BEAMER class, the backgrounds are intended as demonstrations, not as recommendations.

e Inverse video (bright text on dark background) can be a problem during presentations in bright en-
vironments since only a small percentage of the presentation area is light up by the beamer. Inverse
video is harder to reproduce on printouts and on transparencies.

3.5.6 Guidelines on Animations and Special Effects

e Use animations to explain the dynamics of systems, algorithms, etc.

e Do not use animations just to attract the attention of your audience. This often distracts attention
away from the main topic of the slide.

e Do not use distracting special effects like “dissolving” slides unless you have a very good reason for
using them. If you use them, use them sparsely.

3.5.7 Ways of Improving Compilation Speed

While working on your presentation, it may sometimes be useful to TEX your .tex file quickly and have
the presentation contain only the most important information. This is especially true if you have a slow
machine. In this case, you can do several things to speedup the compilation. First, you can use the draft
class option.

\documentclass[draft] {beamer}

Causes the head lines, foot lines, and sidebars to be replaced by gray rectangles (their sizes are still
computed, though). Many other packages, including pgf and hyperref, also “speedup” when this
option is given.

Second, you can use the following command:

\includeonlyframes{(frame label list)}

This command behaves a little bit like the \includeonly command: Only the frames mentioned in the
list are included. All other frames are suppressed. Nevertheless, the section and subsection commands
are still executed, so that you still have the correct navigation bars. By labeling the current frame as,
say, current and then saying \includeonlyframes{current}, you can work on a single frame quickly.

The (frame label list) is a comma-separated list (without spaces) of the names of frames that have been
labeled. To label a frame, you must pass the option label=(name) to the \frame command.

FEzxzample:

\includeonlyframes{examplel, example3}

\frame [label=examplel]
{This frame will be included. }

\frame [label=example?2]
{This frame will not be included. }

\frame{This frame will not be included.}

\againframe{examplel} % Will be included

3.6 Step Five: Test Your Presentation

Always test your presentation. For this, you should vocalize or subvocalize your talk in a quiet environment.
Typically, this will show that your talk is too long. You should then remove parts of the presentation, such
that it fits into the allotted time slot. Do not attempt to talk faster in order to squeeze the talk into the
given amount of time. You are almost sure to loose your audience this way.

Do not try to create the “perfect” presentation immediately. Rather, test and retest the talk and modify
it as needed.

22

LYX

3.7 Step Six: Optionally Create a Handout or an Article Version

Once your talk is fixed, you can create a handout, if this seems appropriate. For this, use the class option
handout as explained in Section 7.1. Typically, you might wish to put several handout slides on one page.
See Section 3.4.2 on how to do this.

You may also wish to create an article version of your talk. An “article version” of your presentation is
a normal TEX text typeset using, for example, the document class article or perhaps llncs or a similar
document class. The BEAMER class offers facilities to have this version coexist with your presentation version
in one file and to share code. Also, you can include slides of your presentation as figures in your article version.
Details on how to setup the article version can be found in Section 7.4.

Creating an article version is not really possible in LyX. You can try, but I would not advise it.

4 Frames and Overlays

This section explains how you can create frames and overlays. It starts with a description of a general
concept, calls overlay specifications. Nearly all of BEAMER’s commands for creating frames and overlays are
based on this concept, except for the simple \pause command (though it is internally also mapped to this
concept).

4.1 The Concept of Overlay Specifications
4.1.1 The General Concept

When creating overlays, how do you specify on which slides of a series of slides a certain text should be
shown? (Such a series is called a frame in BEAMER.) The approach taken by most presentation classes is to
introduce new commands, which get a certain slide number as input and which affect the text on the slide
following this command in a certain way. For example, PROSPER’s \FromSlide{2} command causes all text
following this command to be shown only from the second slide on.

The BEAMER class uses a different approach (though the abovementioned command is also available:
\onslide<2-> will have the same effect as \FromSlide{2}, expect that \onslide trancedes environments).
The idea is to add owverlay specifications to certain commands. These specifications are always given in
pointed brackets and follow the command “as soon as possible,” though in certain cases BEAMER also allows
overlay specification to be given a little later. In the simplest case, the specification contains just a number.
A command with an overlay specification following it will only have “effect” on the slide(s) mentioned in
the specification. What exactly “having an effect” means, depends on the command. Consider the following
example.

\frame

{
\textbf{This line is bold on all three slides.}
\textbf<2>{This line is bold only on the second slide.}
\textbf<3>{This line is bold only on the third slide.}

}

For the command \textbf, the overlay specification causes the text to be set in boldface only on the
specified slides. On all other slides, the text is set in a normal font.
For a second example, consider the following frame:

\frame
{
\only<1>{This line is inserted only on slide 1.}
\only<2>{This line is inserted only on slide 2.}
}

The command \only, which is introduced by BEAMER, normally simply inserts its parameter into the
current frame. However, if an overlay-specification is present, it “throws away” its parameter on slides that
are not mentioned.

Overlay specifications can only be written behind certain commands, not every command. Which com-
mands you can use and which effects this will have is explained in Section 4.3.2. However, it is quite easy to
redefine an existing command such that it becomes “overlay specification aware,” see also Section 4.3.2.

23

LYX

The syntax of (basic) overlay specifications is the following: They are comma-separated lists of slides and

ranges. Ranges are specified like this: 2-5, which means slide two through to five. The start or the end of
a range can be omitted. For example, 3- means “slides three, four, five, and so on” and -5 means the same
as 1-5. A complicated example is -3,6-8,10,12-15, which selects the slides 1, 2, 3, 6, 7, 8, 10, 12, 13, 14,
and 15.
Overlay specifications can also be given in LyX. You must give them in TEX-mode (otherwise the pointed
brackets may be “escaped” by LyX, though this will not happen in all versions). For example, to add an
overlay specification to an item, simply insert a TpX-mode text like <3> as the first thing in that item.
Likewise, you can add an overlay specification to environments like theorem by giving them in TEX-mode
right at the start of the environment.

4.1.2 Mode Specifications

This subsection is only important if you use BEAMER’s mode mechanism to create different versions of your
presentation. If you are not familiar with BEAMER’s modes, please skip this section or read Section 7 first.

In certain cases you may wish to have different overlay specifications to apply to a command in different
modes. For example, you might wish a certain text to appear only from the third slide on during your
presentation, but in a handout for the audience there should be no second slide and the text should appear
already on the second slide. In this case you could write

\only<3| handout:2>{Some text}

The vertical bar, which must be followed by a (white) space, separates the two different specifications 3
and handout:2. By writing a mode name before a colon, you specify that the following specification only
applies to that mode. If no mode is given, as in 3, the mode beamer is automatically added. For this reason,
if you write \only<3>{Text} and you are in handout mode, the text will be shown on all slides since there
is no restriction specified for handouts and since the 3 is the same as beamer: 3.

It is also possible to give an overlay specification that contains only a mode name (or several, separated
by vertical bars):

\only<article>{This text is shown only in article mode.}

An overlay specification that does not contain any slide numbers is called a (pure) mode specification.
If a mode specification is given, all modes that are not mentioned are automatically suppressed. Thus
<beamer:1-> means “on all slides in beamer mode and also on all slides in all other modes, since nothing
special is specified for them,” whereas <beamer> means “on all slides in beamer mode and not on any other

slide.”
Mode specifications can also be used outside frames as in the following examples:

\section<presentation>{This section exists only in the presentation modes}
\section<article>{This section exists only in the article mode}

You can also mix pure mode specifications and overlay specifications, although this can get confusing:
\only<article| beamer:1>{Riddle}

This will cause the text Riddle to be inserted in article mode and on the first slide of a frame in
beamer mode, but not at all in handout or trans mode. (Try to find out how <beamer| beamer:1> differs
from <beamer> and from <beamer:1>.)

4.1.3 Action Specifications

This subsection also introduces a rather advanced concept. You may also wish to skip it on first reading.

Some overlay-specification-aware commands cannot only handle normal overlay specifications, but also
so called action specifications. In an action specification, the list of slide numbers and ranges is prefixed by
(action)@, where (action) is the name of a certain action to be taken on the specified slides:

\item<3-| alert@3> Shown from slide 3 on, alerted on slide 3.

In the above example, the \item command, which allows actions to be specified, will uncover the item text
from slide three on and it will, additionally, alert this item exactly on slide 3.

Not all commands can take an action specification. Currently, only \item (though not in article mode
currently), \action, the environment actionenv, and the block environments (like block or theorem) handle
them.

By default, the following actions are available:

24

e alert alters the item or block.
e uncover uncovers the item or block (this is the default, if no action is specified).
e only causes the whole item or block to be inserted only on the specified slides.

e visible causes the text to become visible only on the specified slides (the difference between uncover
and visible is the same as between \uncover and \visible).

e invisible causes the text to become invisble on the specified slides.

The rest of this section explains how you can add your own actions and make commands action-
specification-aware. You may wish to skip it upon first reading.

You can easily add your own actions: An action specification like (action)@(slide numbers) simply inserts
an environment called (action)env around the \item or parameter of \action with <(slide numbers)> as
overlay specification. Thus, by defining a new overlay-specification-aware environment named (my action
name)env, you can add your own action:

\newenvironment{checkenv}{\only{\useitemizeitemtemplate{X}}}{}
You can then write
\item<beamer:check@2> Text.

This will change the itemization symbol before Text. to X on slide 2 in beamer mode. The definition of
checkenv used the fact that \only also accepts an overlay-specification given after its argument.
The whole action mechanism is base on the following environment:

\begin{actionenv}<(action specification)>
(environment contents)
\end{actionenv}

This environment extracts all actions from the (action specification) for the current mode. For each
action of the form (action)@(slide numbers), it inserts the following text: \begin{(action)env}<(slide
number)> and the beginning of the environment and the text \end{(action)env} at the end. If there
several action specifications, several environments are opened (and closed in the appropriate order). An
(overlay specification) without an action is promoted to uncover@(overlay specification).

If the so called default overlay specification is not empty, it will be used in case no {action specification)
is given. The default overlay specification is usually just empty, but it may be set either by providing an
additional optional argument to the command \frame or to the environments itemize, enumerate, or
description (see these for details). Also, the default action specification can be set using the command
\beamerdefaultoverlayspecification, see below.

FExample:

\frame

{
\begin{actionenv}<2-| alert@3-4,6>
This text is shown the same way as the text below.
\end{actionenv}

\begin{uncoverenv}<2->
\begin{alertenv}<3-4,6>
This text is shown the same way as the text above.
\end{alertenv}
\end{uncoverenv}

}

\action<(action specification)>{(text)}

This has the same effect as putting (text) in an actionenv.

FEzxzample: \action<alert@2>{Could also have used \alert<2>{}.}

25

\beamerdefaultoverlayspecification{(default overlay specification)}

Locally sets the default overlay specification to the given value. This overlay specification will be used
in every actionenv environment and every \item that does not have its own overlay specification. The
main use of this command is to install an incremental overlay specification like <+-> or <+-| alert@+>,
see Section 4.1.4.

Usually, the default overlay specification is installed automatically by the optional arguments to \frame,
itemize, enumerate, and description. You will only have to use this command if you wish to do funny
things.

Example: \beamerdefaultoverlayspecification{<+->}

Ezample: \beamerdefaultoverlayspecification{} clears the default overlay specification. (Actually,
it installs the default overlay specification <*>, which just means “always,” but the “portable” way of
clearing the default overlay specification is this call.)

4.1.4 Incremental Specifications

This subsection is mostly important for people who have already used overlay specifications a lot and have
grown tired of writing things like <1->, <2->, <3-> and so on again and again. You should skip this section
on first reading.

Often you want to have overlay specifications that follow a pattern similar to the following:

\begin{itemize}
\item<1-> Apple
\item<2-> Peach
\item<3-> Plum
\item<4-> QOrange
\end{itemize}

The problem starts if you decide to insert a new fruit, say, at the beginning. In this case, you would have to
adjust all of the overlay specifications. Also, if you add a \pause command before the itemize, you would
also have to update the overlay specifications.

BEAMER offers a special syntax to make creating lists as the one above more “robust.” You can replace
it by the following list of incremental overlay specifications:

\begin{itemize}
\item<+-> Apple
\item<+-> Peach
\item<+-> Plum
\item<+-> Orange
\end{itemize}

The effect of the +-sign is the following: You can use it in any overlay specification at any point where you
would usually use a number. If a +-sign is encountered, it is replaced by the current value of the IXTEX
counter beamerpauses, which is 1 at the beginning of the frame. Then the counter is increased by 1, though
it is only increased once for every overlay specification, even if the specification contains multiple +-signs
(they are replaced by the same number).

In the above example, the first specification is replaced by <1->. Then the second is replaced by <2->
and so forth. We can now easily insert new entries, without having to change anything. We might also write
the following:

\begin{itemize}

\item<+-| alert@+> Apple
\item<+-| alert@+> Peach
\item<+-| alert@+> Plum
\item<+-| alert@+> Orange
\end{itemize}

This will alert the current item when it is uncovered. For example, the first specification <+-| alert@+> is
replaced by <1-| alert®@1>, the second is replaced by <2-| alert®2>, and so on. Since the itemize envi-
ronment also allows you to specify a default overlay specification, see the documentation of that environment,
the above example can be written even more economically as follows:

26

\begin{itemize} [<+-| alert@+>]
\item Apple

\item Peach

\item Plum

\item Orange

\end{itemize}

The \pause command also updates the counter beamerpauses. You can change this counter yourself
using the normal BTEX commands \setcounter or \addtocounter.

Any occurence of a +-sign may be followed by an offset in round brackets. This offset will be added
to the value of beamerpauses. Thus, if beamerpauses is 2, then <+(1)-> expands to <3-> and <+(-1)-+>
expands to <1-2>.

4.2 Frames
4.2.1 Frame Creation

A presentation consists of a series of frames. Each frame consists of a series of slides. You create a frame
using the command \frame. This command takes one parameter, namely the contents of the frame. All of
this text that is not tagged by overlay specifications is shown on all slides of the frame. If a frame contains
commands that have an overlay specification, the frame will contain multiple slides; otherwise it contains
only one slide.

\frame<(overlay specification)>[<(default overlay specification)>] [{options)]{{frame text)}

The (overlay specification) dictates which slides of a frame are to be shown. If left out, the number is
calculated automatically. The (frame text) can be normal ITEX text, but may not contain \verb com-
mands or verbatim environments, unless the containsverbatim options is given, see also Section 4.2.4.

FEzxzample:

\frame

{
\frametitle{A title}
Some content.

}
Ezxample:

\frame<beamer> J, frame is only shown in beamer mode

{
\frametitle{Outline}
\tabelofcontent [current]

}

The (default overlay specification) is an optional argument that is “detected” according to the following
rule: If the first optional argument in square brackets starts with a <, then this argument is a (default
overlay specification), otherwise it is a normal (options) argument. Thus \frame [<+->] [plain] would
be legal, but also \frame [plain].

The effect of the (default overlay specification) is the following: Every command or environment inside
the frame that accepts an action specification, see Section 4.1.3, (this includes the \item command, the
actionenv environment, \action, and all block environments) and that is not followed by an overlay
specification gets the (default overlay specification) as its specification. By providing an incremental
specification like <+->, see Section 4.1.4, this will essentially cause all blocks and all enumerations to be
uncovered piece-wise (blocks internally employ action specifications).

Ezxample: In this frame, the theorem is shown from the first slide on, the proof from the second slide
on, with the first two itemize points shown one after the other; the last itemize point is shown together
with the first one. In total, this frame will contain four slides.

\frame [<+->]
{

\begin{theorem}
$A = B$.
\end{theorem}
\begin{proof}

27

LYX

LYX

LYX

LYX

ARTICLE

\begin{itemize}
\item Clearly, $A = C$.
\item As shown earlier, $C = B$.
\item<3-> Thus $A = B$.
\end{itemize}
\end{proof}
}

The following (options) may be given:

e plain causes the head lines, foot lines, and side bars to be suppressed. This is useful for creating
single frames with different head and foot lines or for creating frames showing big pictures that
completely fill the frame.

Ezample: A frame with a picture completely filling the frame:

\frame[plain] {\hfill\pgfimage [height=9.6cm]{bigimagefilename}\hfill}

Ezxample: A title page, in which the head and foot lines are replaced by two graphics.

\usetitlepagetemplate{
\beamerline{\pgfuseimage{toptitle}}
\vskipOpt plus 1filll

\begin{centering}
\Large{\textbf{\inserttitle}}

\insertdate
\end{centering}

\vskipOpt plus 1filll
\beamerline{\pgfuseimage{bottomtitle}}
}
\frame [plain]{\titlepage?}

e label=(name) causes the frame’s contents to be stored under the name (name) for later resumption

using the command \againframe. If this option is given, you cannot include verbatim text in the
frame, even if you specify an overlay specification like <1>. The frame is still rendered normally.
See also \againframe.
Furthermore, on each slide of the frame a label with the name (name)<(slide number)> is created.
On the first slide, furthermore, a label with the name (name) is created (so the labels (name) and
(name)<1> point to the same slide). Note that labels in general, and these labels in particular, can
be used as targets for hyperlinks.

e containsverbatim tells BEAMER that the frame contains verbatim commands. In this case, only
one slide of the frame is typeset (unless all slides are suppressed by the (overlay specification)).
If you wish to use verbatim text in a frame with several slides, a more roundabout approach is
necessary, see Section 4.2.4. This option cannot be used together with the label option.

Use the style “BeginFrame” to start a frame and the style “EndFrame” to end it. A frame is automati-
cally ended by the start of a new frame and by the start of a new section or subsection (but not by the
end of the document!).

You can pass options and an overlay specification to a frame by giving these in TEX-mode as the first
thing in the frame title. (Some magic is performed to extract them in IyX mode from there.)

The style “BeginPlainFrame” is included as a convenience. It passes the plain option to the frame. To
pass further options to a plain frame, you should use the normal “BeginFrame” style and specify all
options (include plain).

In LyX, you can insert verbatim text directly even in overlayed frames. The reason is that LyX uses a
different internal mechanism for typesetting verbatim text, that is easier to handle for BEAMER.

In article mode, the \frame command does not create any visual reference to the original frame (no
frame is drawn). Rather, the frame text is inserted into the normal text. To change this, you can modify
the frame template, see Section 8.4.4. To suppress a frame in article mode, you can, for example,
specify <presentation> as overlay specification.

28

For compatibility with earlier versions, you can also give an overlay specification in square brackets. If
the sole argument to the \frame command is an argument in square brackets, the BEAMER class will try
to check whether this argument “looks like” an overlay specification. If so, it is assumed to be an overlay
specification.

Note that there is no environment for creating frames. The reason is that I simply have not been able
to come up with an idea of how to implement it in the presence of multiple overlays.

\againframe<(overlay specification)>[<{default overlay specification)>] [{options)1{{name)}

BEAMER Resumes a frame that was previously created using \frame with the option label=(name). You must
have used this option, just placing a label inside a frame “by hand” is not enough. You can use this
command to “continue” a frame that has been interrupted by another frame. The effect of this command
is to call the \frame command with the given (overlay specification), {default overlay specification) (if
present), and (options) (if present) and with the original frame’s contents.

Ezxample:

\frame<1-2>[label=myframe]

{
\begin{itemize}
\item<alert@1> First subject.
\item<alert@2> Second subject.
\item<alert@3> Third subject.
\end{itemize}

}

\frame
{
Some stuff explaining more on the second matter.

}

\againframe<3>{myframe}

The effect of the above code is to create four slides. In the first two, the items 1 and 2 are hilighted.
The third slide contains the text “Some stuff explaining more on the second matter.” The fourth slide
is identical to the first two slides, except that the third point is now hilighted.

FEzxzample:

\frame<1>[label=Cantor]
{

\frametitle{Main Theorem}

\begin{Theorem}
$\alpha < 2"\alpha$ for all ordinals~α.
\end{Theorem}

\begin{overprint}
\onslide<1>
\hyperlink{Cantor<2>}{\beamergotobutton{Proof details}}

\onslide<2->
% this is only shown in the appendix, where this frame is resumed.
\begin{proof}
As shown by Cantor,

\end{proof}

\hfill\hyperlink{Cantor<i>}{\beamerreturnbutton{Return}}
\end{overprint}

\appendix

\againframe<2>{Cantor}

29

In this example, the proof details are deferred to a slide in the appendix. Hyperlinks are setup, so that
one can jump to the proof and go back.

ARTICLE This command is ignored.

LYX Use the style “AgainFrame” to insert an \againframe command. The (label name) is the text on
following the style name and is not put in TEX-mode. However, an overlay specification must be given
in TEX-mode and it must preceed the label name.

4.2.2 Components of a Frame

Each frame consists of several components:

1. a head line,

a foot line,

a left side bar,

a right side bar,
navigation symbols,
a logo,

a frame title, and
some frame contents.

PN O

A frame need not have all of these components. Usually, the first six components are automatically setup
by the theme you are using. To change them, you must install an appropriate template, see Section 8.4.9 for
the head and foot lines and Section 8.4.10 for the side bars. To install a logo, invoke the following command
in the preamble, after having loaded the theme:

\logo{(logo text)}
The (logo text) is usually a command for including a graphic.
FExample:

\pgfdeclareimage [height=0.5cm]{logo}{tu-logo}
\logo{\pgfuseimage{logo}}

ARTICLE This command has no effect.
The frame title is shown prominently at the top of the frame and can be specified with the following
command:
\frametitle<(overlay specification)>[(short frame title)1{(frame title text)}
You should end the (frame title text) with a period, if the title is a proper sentence. Otherwise,
there should not be a period. The (short frame title) is normally not shown, but its available via the
\insertshortframetitle command. The (overlay specification) is mostly useful for suppressing the
frame title in article mode.
FEzxzample:

\frame{
\frametitle{A Frame Title is Important.}

Frame contents.

}

ARTICLE By default, this command creates a new paragraph in article mode, entitled (frame title text). Using
the (overlay specification) makes it easy to suppress the a frame title once in a while. If you generally
wish to suppress all frame titles in article mode, say \useframetitletemplate{}.

LYX The frame title is the text that follows on the line of the “BeginFrame” style.

Be default, all material for a slide is vertically centered. You can change this using the following class
options:

\documentclass[slidestop] {beamer}

Place text of slides at the (vertical) top of the slides. This corresponds to a vertical “flush.”

\documentclass[slidescentered] {beamer}

Place text of slides at the (vertical) center of the slides. This is the default.

30

4.2.3 Restricting the Slides of a Frame

The number of slides in a frame is automatically calculated. If the largest number mentioned in any overlay
specification inside the frame is 4, four slides are introduced (despite the fact that a specification like <4->
might suggest that more than four slides would be possible).

You can also specify the number of slides in the frame “by hand.” To do so, you pass an overlay
specification the \frame command. The frame will contain only the slides specified in this argument.
Consider the following example.

\frame<1-2,4->

{
This is slide number \only<1>{1}\only<2>{2}\only<3>{3}},
\only<4>{4}\only<5>{5}.

}

This command will create a frame containing four slides. The first will contain the text “This is slide
number 1,” the second “This is slide number 2,” the third “This is slide number 4,” and the fourth “This is
slide number 5.”

A useful specification is just <0>, which causes the frame to have to no slides at all. For example,
\frame<handout:0> causes the frame to be suppressed in the handout version, but to be shown normally in
all other versions. Another useful specification is <beamer>, which causes the frame to be shown normally
in beamer mode, but to be suppressed in all other versions.

4.2.4 Verbatim Commands and Listings inside Frames

The \verb command, the verbatim environment, the 1stlisting environment, and related environments
that allow you to typeset arbitrary text work only in frames that contain a single slide or that are sup-
pressed altogether. Furthermore, you must explicitly specify that the frame contains verbatim text using
the containsverbatim commans:

\frame [containsverbatim]
{

\frametitle{Our Search Procedure}

\begin{verbatim}

int find(int* a, int n, int x)

{

for (int i = 0; i<m; i++)
if (al[i]l == x)
return i;

}

\end{verbatim}

}

You may not use the label=(label name) option if you have a verbatim text on a slide.

If you need to use verbatim commands in frames that contain several slides or on a frame that uses the
label option, you must declare your verbatim texts before the frame starts. This is done using two special
commands:

\defverb{{command name)}*(delimiter symbol){verbatim text)(delimiter symbol)

Declares a verbatim text for later use. The declaration should be done outside the frame. Once declared,
the text can be used in overlays like normal text. The one-line (verbatim text) must be delimited by a
special (delimiter symbol) (works like the \verb command). Adding a star makes spaces visible.

FExample:

\defverb\mytext!int main (void) { ...!
\defverb\mytextspaces*!int main (void){ ...!

\frame
{
\begin{itemize}
\item<1-> In C you need a main function.

31

\item<2-> It is declare like this: \mytext
\item<3-> Spaces are not important: \mytextspaces
\end{itemize}

}

\defverbatim[{options)]{{command name)}{(text)}

The (text) may contain a verbatim, verbatim#, lstlisting, or a related environment. The command
{{command name)} can be used later inside frames. The declaration should be done outside the frame.
Once declared, the text can be used in overlays like normal text.

The following (options) may be given:

e colored declares that the verbatim text will have its “own” colors. Normally, the verbatim text is
typeset using the current color, which allows you to use commands like \alert to make verbatim
text red on certain slides. However, if the verbatim text has, say, a special background color or
different parts of it a colored differently (the 1stlisting environment does this), then you do not
want the verbatim text to inherit its color from the “outside.” In this case, you should give the
colored option.

FEzxzample:

\defverbatim\algorithmA{
\begin{verbatim}
int main (void)
{
cout << "Hello world." << endl;
return O;

}
\end{verbatim}
}

\defverbatim[colored] \algorithmB{
\begin{lstlisting}[language={C++},backgroundcolor=\color{yellow}]
int main (void)
{

cout << "Hello world." << endl;

return O;

}
\end{1lstlisting}
}

\frame

{
Our algorithm:
\alert<i>{\algorithmA}
\uncover<2>{Note the return value.}

}

\frame
{

Same algorithm typeset using the lstlisting environment:
\algorithmB
}

4.3 Creating Overlays
4.3.1 The Pause Commands

The pause command offers an easy, but not very flexible way of creating frames that are uncovered piecewise.
If you say \pause somewhere in a frame, only the text on the frame up to the \pause command is shown on
the first slide. On the second slide, everything is shown up to the second \pause, and so forth. You can also
use \pause inside environments; its effect will last after the environment. However, taking this to extremes
and use \pause deeply within a nested environment may not have the desired result.

32

A much more fine-grained control over what is shown on each slide can be attained using overlay speci-
fications, see the next subsections. However, for many simple cases the \pause command is sufficient.
The effect of \pause lasts till the next \pause, \onslide, or the end of the frame.

\frameq{
\begin{itemize}
\item
Shown from first slide on.
\pause
\item
Shown from second slide on.
\begin{itemize}
\item
Shown from second slide on.
\pause
\item
Shown from third slide on.
\end{itemize}
\item
Shown from third slide on.
\pause
\item
Shown from fourth slide on.
\end{itemize}

Shown from fourth slide on.

\begin{itemize}
\unpause
\item

Shown from first slide on.
\pause
\item

Shown from fifth slide on.
\end{itemize}

}

\pause [{number)]

This command causes the text following it to be shown only from the next slide on, or, if the optional
(number) is given, from the slide with the number (number). If the optional (number) is given, the
counter beamerpauses is set to this number. This command uses the \onslide command, internally.
This command does not work inside amsmath environments like align, since these do really wicked
things.

Ezxample:

\frame
{
\begin{itemize}
\item
A
\pause
\item
B
\pause
\item
C
\end{itemize}

}
ARTICLE This command is ignored.

LYX Use the “Pause” style with an empty line to insert a pause.

To “unpause” some text, that is, to temporarily suspend pausing, use the command \onslide, see below.

33

4.3.2 Commands with Overlay Specifications

A much more powerful and flexible way of specifying overlays uses overlay specifications, see Section 4.1 for
an introduction to this concept. In this subsection, the basic commands that take overlay specifications are
described.

For the following commands, adding an overlay specification causes the command to be simply ignored
on slides that are not included in the specification: \textbf, \textit, \textsl, \textrm, \textsf, \color,
\alert, \structure. If a command takes several arguments, like \color, the specification should directly
follow the command as in the following example (but there are exceptions to this rule):

\frame

{
\color<2-3>[rgb]{1,0,0} This text is red on slides 2 and 3, otherwise black.
}

For the following commands, the effect of an overlay specification is special:

\onslide<(overlay specification)>
All text following this command will only be shown (uncovered) on the specified slides. On non-specified
slides, the text still occupies space. If no slides are specified, the following text is always shown. You
need not call this command in the same TEX group, its effect transcedes block groups. However, this
command has a different effect inside an overprint environment, see the description of overprint.

Ezxzample:

\frame
{
Shown on first slide.
\onslide<2-3>
Shown on second and third slide.
\begin{itemize}
\item
Still shown on the second and third slide.
\onslide<4->
\item
Shown from slide 4 on.
\end{itemize}
Shown from slide 4 on.
\onslide
Shown on all slides.

}

\only<(overlay specification)>{{text)}<{overlay specification)>

If either (overlay specification) is present (though only one may be present), the (text) is inserted only
into the specified slides. For other slides, the text is simply thrown away. In particular, it occupies no
space.

Ezample: \only<3->{Text inserted from slide 3 on.}

Since the overlay specification may also be given after the text, you can often use \only to make other
commands overlay-specification-aware in a simple manner:

Ezxample:

\newcommand{\myblue}{\only{\color{blue}}}
\frame

{
\myblue<2> This text is blue only on slide 2.
}

\uncover<(overlay specification)>{(text)}

If the (overlay specification) is present, the (text) is shown (“uncovered”) only on the specified slides.
On other slides, the text still occupies space and it is still typeset, but it is not shown or only shown
as if transparent. For details on how to specify whether the text is invisible or just transparent, see
Section 6.2.3.

34

FEzxzample: \uncover<3->{Text shown from slide 3 on.}

ARTICLE This command has the same effect as \only.

\visible<(overlay specification)>{(text)}

This command does almost the same as \uncover. The only difference is that if the text is not shown,
it is never shown in a transparent way, but rather it is not shown at all. Thus for this command the
transparency settings have no effect.

FEzxzample: \visible<2->{Text shown from slide 2 on.}

ARTICLE This command has the same effect as \only.

\invisible<(overlay specification)>{{text)}

This command is the opposite of \visible.

FEzxample: \invisible<-2>{Text shown from slide 3 on.}

\alt<(overlay specification)>{{default text)}{{alternative text)}<(overlay specification)>
Only one (overlay specification) may be given. The default text is shown on the specified slides, otherwise
the alternative text. The specification must always be present.
FEzxzample: \alt<2>{0n Slide 2}{Not on slide 2.}
Once more, giving the overlay specification at the end is useful when the command is used inside other
commands.
Ezample: Here is the definition of \uncover:

\newcommand{\uncover}{\alt{\@firstofone}{\makeinvisiblel}}

\temporal<{overlay specification)>{{before slide text)}{(default text)}{{after slide text)}

This command alternates between three different texts, depending on whether the current slide is
temporally before the specified slides, is one of the specified slides, or comes after them. If the (overlay
specification) is not an interval (that is, if it has a “hole”), the “hole” is considered to be part of the
before slides.

FExample:
\temporal<3-4>{Shown on 1, 2}{Shown on 3, 4}{Shown 5, 6, 7, ...}
\temporal<3,5>{Shown on 1, 2, 4}{Shown on 3, 5}{Shown 6, 7, 8, ...}

As a possible application of the \temporal command consider the following example:

Ezxzample:

\def\colorize<#1>{/
\temporal<#1>{\color{structure!50}}{\color{black}}{\color{black!50}}}

\frameq{
\begin{itemize}
\colorize<1> \item First item.
\colorize<2> \item Second item.
\colorize<3> \item Third item.
\colorize<4> \item Fourth item.
\end{itemize}

}

\item<(alert specification)>[(item label)]1<{alert specification)>

BEAMER Ounly one (alert specification) may be given. The effect of (alert specification) is described in Section 4.1.3.

FExample:

\frame

{
\begin{itemize}
\item<1-> First point, shown on all slides.
\item<2-> Second point, shown on slide 2 and later.

35

\item<2-> Third point, also shown on slide 2 and later.
\item<3-> Fourth point, shown on slide 3.
\end{itemize}

}

\frame
{
\begin{enumerate}
\item<3-| alert@3>[0.] A zeroth point, shown at the very end.
\item<1-| alert@1> The first an main point.
\item<2-| alert@2> The second point.
\end{enumerate}

}
ARTICLE The (action specification) is currently completely ignored.

LyX The (action specification) must be given in TgX-mode and it must be given at the very start of the
item.

The related command \bibitem is also overlay-specification-aware in the same way as \item.

\label<(overlay specification)>{{label name)}

If the (overlay specification) is present, the label is only inserted on the specified slide. Inserting a label
on more than one slide will cause a ‘multiple labels’ warning. Howewver, if no overlay specification is
present, the specification is automatically set to just ‘1’ and the label is thus inserted only on the first
slide. This is typically the desired behaviour since it does not really matter on which slide the label is
inserted, except if you use an \only command and ezcept if you wish to use that lable as a hyperjump
target. Then you need to specifiy a slide.

Labels can be used as target of hyperjumps. A convenient way of labelling a frame is to use the
label=(name) option of the \frame command. However, this will cause the whole frame to be kept in
memory till the end of the compilation, which may pose a problem.

Ezxzample:

\frame
{
\begin{align}
a &= b + ¢ \label{first}\\ 7% no specification needed
c &= d + e \label{second}\\’% no specification needed
\end{align}

Blah blah, \uncover<2>{more blah blah.}

\only<3>{Specification is needed now.\label<3>{mylabell}}
}

4.3.3 Environments with Overlay Specifications

Environments can also be equipped with overlay specifications. For most of the predefined environments,
see Section 5.4.3, adding an overlay specifications causes the whole environment to be uncovered only on the
specified slides. This is useful for showing things incrementally as in the following example.

\frame
{
\frametitle{A Theorem on Infinite Sets}

\begin{theorem}<1->
There exists an infinite set.
\end{theorem}

\begin{proof}<3->

This follows from the axiom of infinity.
\end{proof}

36

\begin{example}<2->
The set of natural numbers is infinite.
\end{example}
}

In the example, the first slide only contains the theorem, on the second slide an example is added, and on
the third slide the proof is also shown.

For each of the basic commands \only, \alt, \visible, \uncover, and \invisible there exists “envi-
ronment versions” onlyenv, altenv, visibleenv, uncoverenv, and invisibleenv. Except for altenv and
onlyenv, these environments do the same as the commands.

\begin{onlyenv}<(overlay specification)>
(environment contents)
\end{onlyenv}

If the (overlay specification) is given, the contents of the environment is inserted into the text only on
the specified slides. The difference to \only is, that the text is actually typeset inside a box that is then
thrown away, whereas \only immediately throws away its contents. If the text is not “typesettable,”
the onlyenv may produce an error where \only would not.

FEzample:

\frame
{
This line is always shown.
\begin{onlyenv}<2>
This line is inserted on slide 2.
\end{onlyenv}
}

\begin{altenv}<(overlay specification)>{{begin text)}{(end text)}{({alternate begin text)}{{alternate end
text)}<(overlay specification)>

(environment contents)

\end{altenv}

Ouly one (overlay specification) may be given. On the specified slides, (begin text) will be inserted at the
beginning of the environment and (end text) will be inserted at the end. On all other slides, (alternate
begin text) and (alternate end text) will be used.

FEzxample:

\frame
{
This
\begin{altenv}<2>{ (3O M [}1}
word
\end{uncoverenv}
is in round brackets on slide 2 and in square brackets on slide 1.

4.3.4 Dynamically Changing Text

You may sometimes wish to have some part of a frame change dynamically from slide to slide. On each
slide of the frame, something different should be shown inside this area. You could achieve the effect of
dynamically changing text by giving a list of \only commands like this:

\only<1i>{Initial text.}
\only<2>{Replaced by this on second slide.}
\only<3>{Replaced again by this on third slide.}

The trouble with this approach is that it may lead to slight, but annoying differences in the heights of the
lines, which may cause the whole frame to “whobble” from slide to slide. This problem becomes much more
severe if the replacement text is several lines long.

To solve this problem, you can use two environments: overlayarea and overprint. The first is more
flexible, but less user-friendly.

37

\begin{overlayarea}{(area width)}{{area height)}
(environment contents)
\end{overlayarea}

LYX

Everything within the environment will be placed in a rectangular area of the specified size. The area
will have the same size on all slides of a frame, regardless of its actual contents.

Ezxample:

\begin{overlayarea}{\textwidth}{3cm}
\only<1>{Some text for the first slide.\\Possibly several lines long.}
\only<2>{Replacement on the second slide.}

\end{overlayarea}

Use the style “OverlayArea” to insert an overlay area.

\begin{overprint} [(area width)]
(environment contents)
\end{overprint}

LYX

The (area width) defaults to the text width. Inside the environment, use \onslide commands to specify
different things that should be shown for this environment on different slides. The \onslide commands
are used like \item commands. Everything within the environment will be placed in a rectangular area
of the specified width. The height and depth of the area are chosen large enough to accommodate the
largest contents of the area. The overlay specifications of the \onslide commands must be disjoint.
This may be a problem for handouts, since, there, all overlay specifications defaul to 1. If you use the
option handout, you can disable all but one \onslide by setting the others to 0.

FExample:

\begin{overprint}
\onslide<1| handout:1>
Some text for the first slide.\\
Possibly several lines long.
\onslide<2| handout:0>
Replacement on the second slide. Supressed for handout.
\end{overprint}

Use the style “Overprint” to insert an overprint environment. You have to use TEX-mode to insert
the \onslide commands.

4.4 Making Commands and Environments Overlay-Specification-Aware

This subsection explains how to define new commands that are overlay-specification-aware. Also, it explains
how to setup counters correctly that should be increased from frame to frame (like equation numbering),
but not from slide to slide. You may wish to skip this section, unless you want to write your own extensions
to the BEAMER class.

BEAMER extends the syntax of ITEX’s standard command \newcommand:

\newcommand<>{(command name)} [{argument number)] [{default optional value)]{{text)}

Declares the new command named (command name). The (text) should contain the body of this
command and it may contain occurences of parameters like #({number). Here (number) may be between
1 and (argument number) + 1. The additionally allowed argument is the overlay specification.

When (command name) is used, it will scan as many as {argument number) arguments. While scanning
them, it will look for an overlay specification, which may be given between any two arguments, before
the first argument, or after the last argument. If it finds an overlay specification like <3>, it will call
(text) with arguments 1 to (argument number) set to the normal arguments and the argument number
(argument number) + 1 set to <3> (including the pointed brackets). If no overlay specification is found,
the extra argument is empty.

If the (default optional value) is provided, the first argument of (command name) is optional. If no
optional argument is specified in square brackets, the (default optional value) is used.

Example: The following command will typeset its argument in red on the specified slides:
\newcommand<>{\makered} [1]{{\color#2{red}#1}}

38

Ezxample: Here is BEAMER’s definition of \emph:
\newcommand<>{\emph} [1] {{\only#2{\itshape}#1}}

Ezample: Here is BEAMER’s definition of \transdissolve (the command \beamer@dotrans mainly
passes its argument to hyperref):

\newcommand<>{\transdissolve} [1] [1{\only#2{\beamer@dotrans [#1]{Dissolve}}}

\renewcommand<>{(existing command name)} [{argument number)] [{default optional value)l{(text)}

Redeclares a command that already exists in the same way as \newcommand<>. Inside (fext), you can
still access to original definitions using the command \beameroriginal, see the example.

Ezxample: This command is used in BEAMER to make \hyperlink overlay-specification-aware:
\renewcommand<>{\hyperlink}[2]{\only#3{\beameroriginal{\hyperlink}{#1}{#2}}}

\newenvironment<>{({environment name)} [{argument number)] [{default optional value)]
{(begin text)}{(end text)}

Declares a new environment that is overlay-specification-aware. If this environment encountered, the
same algorithm as for \newcommand<> is used to parse the arguments and the overlay specification.

Note that, as always, the (end text) may not contain any arguments like #1. In particular, you do not
have access to the overlay specification. In this case, it is usually a good idea to use altenv environment
in the (begin text).

FEzample: Declare your own action block:

\newenvironment<>{myboldblock} [1]{%
\begin{actionenv}#2J,
\textbf{#1}
\par}
{\par’

\end{actionenv}}

\frame
{
\begin{myboldblock}<2>
This theorem is shown only on the second slide.
\end{myboldblock}
}

Ezxample: Text in the following environment is normally bold and italic on non-specified slides:

\newenvironment<>{boldornormal}
{\begin{altenv}#1
{\begin{bfseries}}{\end{bfseries}}
{3}
{\end{altenv}}

Incidentally, since altenv also accepts its argument at the end, the same effect could have been achieved
using just
\newenvironment{boldornormal}
{\begin{altenv}
{\begin{bfseries}}{\end{bfseries}}
{33
{\end{altenv}}

\renewenvironment<>{{existing environment name)} [{argument number)] [{default optional value)]

{{begin text)}{{end text)}

Redefines an existing environment. The original environment is still available under the name
original(existing environment name).

Example:

\renewenvironment<>{verse}
{\begin{actionenv}#1\begin{originalverse}}
{\end{originalverse}\end{actionenv}}

39

The following two commands can be used to ensure that a certain counter is automatically reset on
subsequent slides of a frame. This is necessary for example for the equation count. You might want this
count to be increased from frame to frame, but certainly not from overlay slide to overlay slide. For equation
counters and footnote counters (you should not use footnotes), these commands have already been invoked.

\resetcounteronoverlays{(counter name)}

After you have invoked this command, the value of the specified counter will be the same on all slides
of every frame.

Example: \resetcounteronoverlays{equation}

\resetcountonoverlays{(count register name)}

5

5.1

The same as \resetcounteronoverlays, except that this command should be used with counts that
have been created using the TEX primitive \newcount instead of INTEX’s \definecounter.

FEzxzample:

\newcount\mycount
\resetcountonoverlays{mycount}

Structuring a Presentation

Global Structure of Presentations

Ideally, during most presentations you would like to present your slides in a perfectly linear fashion, presum-
ably by pressing the page-down-key once for each slide. However, there are different reasons why you might
have to deviate from this linear order:

e Your presentation may contain “different levels of detail” that may or may not be skipped or expanded,

depending on the audience’s reaction.

e You are asked questions and wish to show supplementary slides.

e You are asked questions about an earlier slide, which forces you to find and then jump to that slide.

You cannot really prepare against the last kind of questions. In this case, you can use the navigation bars
and symbols to find the slide you are interested in, see 5.3.

Concerning the first two kinds of deviations, the BEAMER class offers several ways of preparing such
“planned detours” or “planned short cuts”.

e You can easily add predefined “skip buttons.” When such a button is pressed, you jump over a well-

defined part of your talk. Skip button have two advantages over just pressing the forward key is rapid
succession: first, you immediately end up at the correct position and, second, the button’s label can
give the audience a visual feedback of what exactly will be skipped. For example, when you press a
skip button labeled “Skip proof” nobody will start puzzling over what he or she has missed.

You can add an appendix to your talk. The appendix is kept “perfectly separated” from the main talk.
Ounly once you “enter” the appendix part (presumably by hyperjumping into it), does the appendix
structure become visible. You can put all frames that you do not intend to show during the normal
course of your talk, but which you would like to have handy in case someone asks, into this appendix.

You can add “goto buttons” and “return buttons” to create detours. Pressing a goto button will jump
to a certain part of the presentation where extra details can be shown. In this part, there is a return
button present on each slide that will jump back to the place where the goto button was pressed.

You can use the \againframe command to “continue” frames that you previously started somewhere,
but where certain details have been suppressed. You can use the \againframe command at a much
later point, for example only in the appendix to show to additional slides there.

40

5.2 Commands for Creating the Global Structure
5.2.1 Adding a Title Page

You can use the \titlepage command to insert a title page into a frame.
The \titlepage command will arrange the following elements on the title page: the document title, the
author(s)’s names, their affiliation, a title graphic, and a date.

\titlepage
Inserts the text of a title page into the current frame.
Example: \frame{\titlepage}
LYX If you use the “Title” style in your presentation, a title page is automatically inserted.
For compatibility with other classes in article mode, the following command is also provided:
\maketitle

BEAMER Same as \titlepage.

Before you invoke the title page command, you must specify all elements you wish to be shown. This is
done using the following commands:

\title[(short title)1{(title)}

The (short tile) is used in head lines and foot lines. Inside the (title) line breaks can be inserted using
the double-backslash command.

Ezxample:

\title{The Beamer Class}
\title[Short Version]{A Very Long Title\\Over Several Lines}

ARTICLE The short form is ignored in article mode.

\author [(short author names)]{{author names)}

The names should be separated using the command \and. In case authors have different affiliations,
they should be suffixed by the command \inst with different parameters.

Ezxample: \author [Hemaspaandra et al.]{L. Hemaspaandra\inst{1} \and T. Tantau\inst{2}}
ARTICLE The short form is ignored in article mode.

\institute [(short institute)]{(institute)}

If more than one institute is given, they should be separated using the command \and and they should
be prefixed by the command \inst with different parameters.

Ezxample:

\institute[Universities of Rochester and Berlin]{
\inst{1}Department of Computer Science\\
University of Rochester
\and
\inst{2}Fakult\"at f\"ur Elektrotechnik und Informatik\\
Technical University of Berlin}

ARTICLE The short form is ignored in article mode. The long form is also ignored, except if the document class
(like 11ncs) defines it.

\date [{short date)]{(date)}
Example: \date{\today} or \date [STACS 2003]{STACS Conference, 2003}.
ARTICLE The short form is ignored in article mode.
\titlegraphic{(text)}
The (text) is shown as title graphic. Typically, a picture environment is used as (text).
Ezample: \titlegraphic{\pgfuseimage{titlegraphic}}

ARTICLE The command is ignored in article mode.

41

5.2.2 Adding Sections and Subsections

You can structure your text using the commands \section and \subsection. Unlike standard IATEX, these
commands will not create a heading at the position where you use them. Rather, they will add an entry to
the table of contents and also to the navigation bars.

In order to create a line break in the table of contents (usually not a good idea), you can use the
command \breakhere. Note that the standard command \\ does not work (actually, I do not really know
why; comments would be appreciated).

\section<(mode specification)>[(short section name)]{{section name)}

Starts a section. No heading is created. The (section name) is shown in the table of contents and in the
navigation bars, except if (short section name) is specified. In this case, (short section name) is used in
the navigation bars instead. If a (mode specification) is given, the command only has an effect for the
specified modes.

Example: \section[Summary]{Summary of Main Results}

ARTICLE Then (mode specification) allows you to provide an alternate section command in article mode. This
is necessary for example if the (short section name) is unsuitable for the table of contents:

FEzxzample:

\section<presentation>[Results]{Results on the Main Problem}
\section<article>{Results on the Main Problem}

\section<(mode specification)>*{(section name)}

Starts a section without an entry in the table of contents. No heading is created, but the (section name)
is shown in the navigation bar.

FEzample: \section*{Outline}
Ezxample: \section<beamer>+*{0utline}
\subsection<(mode specification)>[(short subsection name)]{{subsection name)}
This command works the same way as the \section command.
FEzample: \subsection[Applications]{Applications to the Reduction of Pollution}

\subsection<(mode specification)>*{{subsection name)}

Starts a subsection without an entry in the table of contents. No heading is created, but the (subsection
name) is shown in the navigation bar, except if (subsection name) is empty. In this case, neither a table
of contents entry nor a navigation bar entry is created, but any frames in this “empty” subsection are
shown in the navigation bar.

FEzxample:

\section{Summary}
\frame{This frame is not shown in the navigation bar}
\subsection*{}

\frame{This frame is shown in the navigation bar, but no subsection
entry is shown.}

\subsection*{A subsection}

\frame{Normal frame, shown in navigation bar. The subsection name is
also shown in the navigation bar, but not in the table of contents.}

Often, you may want a certain type of frame to be shown directly after a section or subsection starts.
For example, you may wish every subsection to start with a frame showing the table of contents with the
current subsection hilighted. To facilitate this, you can use the following two commands.

42

\AtBeginSection [(special star text)]{(text)}

The given text will be inserted at the beginning of every section. If the (special star text) parameter
is specified, this text will be used for starred sections instead. Different calls of this command will not
“add up” the given texts (like the \AtBeginDocument command does), but will overwrite any previous
text.

FExample:

\AtBeginSection[] % Do nothing for \sectionx
{

\frame<beamer>
{
\frametitle{Outline}
\tableofcontents [current]
}
}

ARTICLE This command has no effect in article mode.

LYX You have to insert this command using a TEX-mode text.

\AtBeginSubsection[(special star text)]{(text)}

The given text will be inserted at the beginning of every subsection. If the (special star text) parameter
is specified, this text will be used for starred subsections instead. Different calls of this command will
not “add up” the given texts.

Example:

\AtBeginSubsection[] % Do nothing for \subsectionx
{
\frame<beamer>
{
\frametitle{Outline}
\tableofcontents[current,currentsubsection]
}
}

5.2.3 Adding Parts

If you give a long talk (like a lecture), you may wish to break up your talk into several parts. Each such
part acts like a little “talk of its own” with its own table of contents, its own navigation bars, and so on.
Inside one part, the sections and subsections of the other parts are not shown at all.

To create a new part, use the \part command. All sections and subsections following this command will
be “local” to that part. Like the \section and \subsection command, the \part command does not cause
any frame or special text to be produced. However, it is often advisable for the start of a new part to use
the command \partpage to insert some text into a frame that “advertises” the beginning of a new part.
See beamerexample3.tex for an example.

\part<(mode specification)>[{short part name)]l{{part name)}

Starts a part. The (part name) will be shown when the \partpage command is used. The (shown part
name) is not shown anywhere by default, but it is accessible via the command \insertshortpart.

Ezxample:

\begin{document}
\frame{\titlepage}

\section*{Outlines}
\subsection{Part I: Review of Previous Lecture}
\frame{
\frametitle{Outline of Part I}
\tableofcontents[part=1]}
\subsection{Part II: Today’s Lecturel}
\frameq{
\frametitle{Outline of Part II}

43

\tableofcontents[part=2]}

\part{Review of Previous Lecture}

\frame{\partpage}

\section[Previous Lecture]{Summary of the Previous Lecture}
\subsection{Topics}

\frame{...}
\subsection{Learning Objectives}
\frame{...}

\part{Today’s Lecture}
\frame{\partpage}
\section{Topic A}
\frame{\tableofcontents[current]}
\subsection{Foo}
\frame{...}
\section{Topic B}
\frame{\tableofcontents[current]}
\subsection{bar}
\frame{...}

\end{document}

\partpage
Works like \titlepage, only that the current part, not the current presentation is “advertised.” The
appearance can be changed by adjusting the part page template, see Section 8.4.3.

Example: \frame{\partpage}

\AtBeginPart{(text)}

The given text will be inserted at the beginning of every part.

Ezxample:
\AtBeginPart{\frame{\partpage}}

5.2.4 Splitting a Course Into Lectures

When using BEAMER with the article mode, you may wish to have the lecture notes of a whole course
reside in one file. In this case, only a few frames are actually part of any particular lecture.

The \lecture command makes it easy to select only a certain set of frames from a file to be presented.
This command takes (among other things) a label name. If you say \includeonlylecture with this la-
bel name, then only the frames following the \lecture command are shown. The frames following other
\lecture commands are suppressed.

By default, the \lecture command has no other effect. It does not create any frames or introduce entries
in the table of contents. However, you can use \AtBeginLecture to have BEAMER insert, say, a title page
at the beginning of (each) lecture.

\lecturel[(short lecture name)l{(lecture name)}{(lecture label)}

Starts a lecture. The (lecture name) will be available via the \insertlecture command. The (short
lecture name) is available via the \insertshortlecture command.

FEzxzample:

\begin{document}
\lecture{Vector Spaces}{week 1}

\section{Introduction}
\section{Summary}
\lecture{Scalar Products}{week 2}

\section{Introduction}

44

\section{Summary}

\end{document}

ARTICLE This command has no effect in article mode.

\includeonlylecture(lecture label)

Causes all \frame, \section, \subsection, and \part commands following a \lecture command to
be suppressed, except if the lecture’s label matches the (lecture label). Frames before any \lecture
commands are always included. This command should be given in the preamble.

Example: \includeonlylecture{week 1}

ARTICLE This command has no effect in article mode.

\AtBeginLecture{(tezt)}

The given text will be inserted at the beginning of every lecture.

Ezxample:

\AtBeginLecture{\frame{\Large Today’s Lecture: \insertlecture}}

ARTICLE This command has no effect in article mode.

5.2.5 Adding a Table of Contents

You can create a table of contents using the command \tableofcontents. Unlike the normal IXTEX table
of contents command, this command takes an optional parameter in square brackets that can be used to
create certain special effects.

\tableofcontents [(comma-separated option list)]

Inserts a table of contents into the current frame. To change how the table of contents is typeset, you
need to modify the appropriate templates, see Section 8.4.6.

Ezxample:

\section*{0Outline}
\frame{\tableofcontents}

\section{Introduction}
\frame{\tableofcontents[current]}
\subsection{Why?}

\frame{...}

\frame{...}

\subsection{Where?}

\frame{...}

\section{Results}
\frame{\tableofcontents[current]}
\subsection{Because}

\frame{...}
\subsection{Here}
\frame{...}

The following options can be given:

e part=(part number) causes the table of contents of part (part number) to be shown, instead of the
table of contents of the current part (which is the default). This option can be combined with the
other options, although combining it with the current option obviously makes no sense.

e sections={(overlay specification)} causes only the sections mentioned in the {(overlay specification)
to be shown. For example, sections={<2-4| handout:0>} causes only the second, third, and
fourth section to be shown in the normal version, nothing to be shown in the handout version, and
everything to be shown in all other versions. For convenience, if you omit the pointed brackets,
the specification is assumed to apply to all versions. Thus sections={2-4} causes sections two,
three, and four to be shown in all versions.

45

firstsection=(section number) specifies which section should be numbered as section “1.” This
is useful if you have a first section (like an overview section) that should not receive a number.
Section numbers are not shown by default. To show them, you must install a different table of
contents templates.

current causes all sections but the current to be shown in a semi-transparent way. Also, all
subsections but those in the current section are shown in the semi-transparent way.

currentsubsection causes all subsections but the current subsection in the current section to be
shown in a semi-transparent way.

pausesections causes a \pause command to be issued before each section. This is useful if you
wish to show the table of contents in an incremental way.

pausesubsections causes a \pause command to be issued before each subsection.

hidesubsections causes the subsections to be omitted. However, if used together with the current
option, the subsections of the current section are not omitted.

shadesubsections causes the subsections to be shown in a semi-transparent way.

The last two commands are useful if you do not wish to show too many details when presenting the talk
outline.

ARTICLE The options are ignored in article mode.

LYX You can give options to the \tableofcontents command by inserting a TEX-mode text with the options
in square brackets directly after the table of contents.

5.2.6 Adding a Bibliography

You can use the bibliography environment and the \cite commands of IXTEX in a BEAMER presentation.

However,

there are a few things to keep in mind:

e It is a bad idea to present a long bibliography in a presentation. Present only very few references.

e Present references only if they are intended as “further reading,” for example at the end of a lecture.

e Using the \cite commands can be confusing since the audience has little chance of remembering the
citations. If you cite the references, always cite them with full author name and year like “[Tantau,
2003]” instead of something like “[2,4]” or “[Tan01,NT02]”.

e If you want to be modest, you can abbreviate your name when citing yourself as in “[Nickelsen and T.,
2003]” or “[Nickelsen and T, 2003]”. However, this can be confusing for the audience since it is often
not immediately clear who exactly “T.” might be. I recommend using the full name.

Keeping the above warnings in mind, proceed as follows to create the bibliography:

For a beamer presentation, you will typically have to typeset your bibliography items partly “by hand.”
Nevertheless, you can use bibtex to create a “first approximation” of the bibliography. Copy the content
of the file main.bbl into your presentation. If you are not familiar with bibtex, you may wish to consult
its documentation. It is a powerful tool for creating high-quality citations.

Using bibtex or your editor, place your bibliographic references in the environment thebibliography.
This (standard ITEX) environment takes one parameter, which should be the longest \bibitem label in the
following list of bibliographic entries.

\begin{thebibliography}{(longest label text)}
(environment contents)
\end{thebibliography}

Inserts a bibliography into the current frame. The (longest label text) is used to determine the indent
of the list. However, several templates for the typesetting of the bibliography (see Section 8.4.7) ignore
this parameter since they replace the references by a symbol.

Inside the environment, use a (standard ITEX) \bibitem command for each reference item. Inside
each item, use a (standard IATEX) \newblock command to separate the authors’s names, the title, the
book/journal reference, and any notes. Each of these commands may introduce a new line or color or
other formatting, as specified by the template for bibliographies.

46

The environment must be placed inside a frame. If the bibliography does not fit on one frame, you
should split it (create a new frame and a second thebibliography environment). Even better, you
should reconsider whether it is a good idea to present so many references.

Ezxample:

\frame{
\frametitle{For Further Reading}

\begin{thebibliography}{Dijkstra, 1982}
\bibitem[Solomaa, 1973]{Solomaal973}
A."Salomaa.
\newblock {\em Formal Languages}.
\newblock Academic Press, 1973.

\bibitem[Dijkstra, 1982]{Dijkstral982}

E."Dijkstra.

\newblock Smoothsort, an alternative for sorting in situ.

\newblock {\em Science of Computer Programming}, 1(3):223--233, 1982.
\end{thebibliography}
}

\bibitem<(overlay specification)>[(citation text)]{{label name)}

The {citation text) is inserted into the text when the item is cited using \cite{(label name)} in the
main presentation text. For a BEAMER presentation, this should usually be as long as possible.

Use \newblock commands to separate the authors’s names, the title, the book/journal reference, and
any notes. If the (overlay specification) is present, the entry will only be shown on the specified slides.

Ezxample:

\bibitem[Dijkstra, 1982]{Dijkstral982}
E. Dijkstra.
\newblock Smoothsort, an alternative for sorting in situ.
\newblock {\em Science of Computer Programming}, 1(3):223--233, 1982.

Unlike normal BTEX, the default template for the bibliography does not repeat the citation text (like
“[Dijkstra, 1982]”) before each item in the bibliography. Instead, a cute, small article symbol is drawn. The
rationale is that the audience will not be able to remember any abbreviated citation texts till the end of the
talk. If you really insist on using abbreviations, you can use the command \beamertemplatetextbibitems
to restore the default behavior, see also Section 8.4.7.

5.2.7 Adding an Appendix

You can add an appendix to your talk by using the \appendix command. You should put frames and
perhaps whole subsections into the appendix that you do not intend to show during your presentation, but
which might be useful to answer a question. The \appendix command essentially just starts a new part
named \appendixname. However, it also sets up certain hyperlinks. Like other parts, the appendix is kept
separate of your actual talk.

\appendix<({mode specification)>

Starts the appendix in the specified modes. All frames, all \subsection commands, and all \section
commands used after this command will not be shown as part of the normal navigation bars.

Ezxample:

\begin{document}
\frame{\titlepage}
\section*{0Outline}
\frame{\tableofcontents}
\section{Main Text}
\frame{Some text}
\section*{Summary}
\frame{Summary text}

47

\appendix

\section{\appendixname}
\frame{\tableofcontents}
\subsection{Additional material}
\frame{Details}

\frame{Text omitted in main talk.}
\subsection{Even more additional material}
\frame{More details}

\end{document}

5.2.8 Adding Hyperlinks and Buttons

To create an anticipated nonlinear jumps in your talk structure, you can add hyperlinks to your presentation.
A hyperlink is a text (usually rendered as a button) that, when you click on it, jumps the presentation to
some other slide. Creating such a button is a three-step process:

1. You specify a target using the command \hypertarget or (easier) the command \label. In some
cases, see below, this step may be skipped.

2. You render the button using \beamerbutton or a similar command. This will render the button, but
clicking it will not yet have any effect.

3. You put the button inside a \hyperlink command. Now clicking it will jump to the target of the link.

\hypertarget<(overlay specification)>{(target name)}{(text)>

If the (overlay specification) is present, the (text) is the target for hyper jumps to (target name) only on
the specified slide. On all other slides, the text is shown normally. Note that you must add an overlay
specification to the \hypertarget command whenever you use it on frames that have multiple slides
(otherwise pdflatex rightfully complains that you have defined the same target on different slides).

FEzxzample:

\frameq{
\begin{itemize}
\item<1-> First item.
\item<2-> Second item.
\item<3-> Third item.
\end{itemize}

\hyperlink{jumptosecond}{\beamergotobutton{Jump to second slide}}
\hypertarget<2>{jumptosecond}{}
}

ARTICLE You must say \usepackage{hyperref} in your preamble to use this command in article mode.

The \label command creates a hypertarget as a side-effect and the label=(name) option of the \frame
command creates a label named (name)<(slide number)> for each slide of the frame as a side-effect. Thus
the above example could be written more easily as:

\frame [label=threeitems]{
\begin{itemize}
\item<1-> First item.
\item<2-> Second item.
\item<3-> Third item.
\end{itemize}

\hyperlink{threeitems<2>}{\beamergotobutton{Jump to second slide}}

The following commands can be used to specify in an abstract way what a button will be used for. How
exactly these buttons are rendered is governed by a template, see Section 8.4.11.

\beamerbutton{(button text)}
Draws a button with the given (button text).

48

Ezample: \hyperlink{somewhere}{\beamerbutton{Go somewhere}}

ARTICLE This command (and the following) just insert their argument in article mode.

\beamergotobutton{(button text)}

Draws a button with the given (button text). Before the text, a small symbol (usually a right-pointing
arrow) is inserted that indicates that pressing this button will jump to another “area” of the presentation.

Example: \hyperlink{detour}{\beamergotobutton{Go to detour}}

\beamerskipbutton{(button text)}

The symbol drawn for this button is usually a double right arrow. Use this button if pressing it will
skip over a well-defined part of your talk.

Ezxzample:

\frame{
\begin{theorem}

\end{theorem}

\begin{overprint}
\onslide<1>
\hfill\hyperlinkframestartnext{\beamerskipbutton{Skip proofl}}
\onslide<2>
\begin{proof}

\end{proof}
\end{overprint}
}

\beamerreturnbutton{(button text)}

The symbol drawn for this button is usually a left pointing arrow. Use this button if pressing it will
return from a detour.

FExample:

\frame<1>[label=mytheorem]
{
\begin{theorem}

\end{theorem}

\begin{overprint}
\onslide<1>

\hfill\hyperlink{mytheorem<2>}{\beamergotobutton{Go to proof detailsl}}
\onslide<2>

\begin{proof}

\end{proof}
\hfill\hyperlink{mytheorem<1>}{\beamerreturnbutton{Return}}
\end{overprint}
}
\appendix
\againframe<2>{mytheorem}

To make a button “clickable” you must place it in a command like \hyperlink. The command
\hyperlink is a standard command of the hyperref package. The BEAMER class defines a whole bunch of
other hyperlink commands that you can also use.

\hyperlink<({overlay specification)>{(target name)}{(link text)}<(overlay specification)>

Ouly one (overlay specification) may be given. The (link text) is typeset in the usual way. If you click
anywhere on this text, you will jump to the slide on which the \hypertarget command was used with
the parameter (target name). If an (overlay specification) is present, the hyperlink (including the (link
text)) is completely suppressed on the non-specified slides.

49

The following commands have a predefined target; otherwise they behave exactly like \hyperlink. In
particular, they all also accept an overlay specification and they also accept it at the end, rather than at the
beginning.

\hyperlinkslideprev<(overlay specification)>{(link text)}
Clicking the text jumps one slide back.

\hyperlinkslidenext<{overlay specification)>{{link text)}

Clicking the text jumps one slide forward.

\hyperlinkframestart<(overlay specification)>{{link text)}
Clicking the text jumps to the first slide of the current frame.

\hyperlinkframeend<({overlay specification)>{{link text)}

Clicking the text jumps to the last slide of the current frame.

\hyperlinkframestartnext<({overlay specification)>{(link text)}
Clicking the text jumps to the first slide of the next frame.

\hyperlinkframeendprev<(overlay specification)>{(link text)}
Clicking the text jumps to the last slide of the previous frame.
The previous four command exist also with “frame” replaced by “subsection” everywhere, and also
again with “frame” replaced by “section”.

\hyperlinkpresentationstart<(overlay specification)>{(link text)}
Clicking the text jumps to the first slide of the presentation.

\hyperlinkpresentationend<(overlay specification)>{(link text)}
Clicking the text jumps to the last slide of the presentation. This ezcludes the appendix.

\hyperlinkappendixstart<(overlay specification)>{(link text)}

Clicking the text jumps to the first slide of the appendix. If there is no appendix, this will jump to the
last slide of the document.

\hyperlinkappendixend<(overlay specification)>{(link text)}
Clicking the text jumps to the last slide of the appendix.

\hyperlinkdocumentstart<(overlay specification)>{{link text)}
Clicking the text jumps to the first slide of the presentation.
\hyperlinkdocumentend<{overlay specification)>{{link text)}

Clicking the text jumps to the last slide of the presentation or, if an appendix is present, to the last
slide of the appendix.

5.3 Navigation Bars and Symbols

Navigation bars and symbols are two independent concepts that can be used to navigate through a presen-
tation. They are created automatically.

50

5.3.1 Using the Navigation Bars

Most themes that come along with the BEAMER class show some kind of navigation bar during your talk.
Although these navigation bars take up quite a bit of space, they are often useful for two reasons:

e They provide the audience with a visual feedback of how much of your talk you have covered and
what is yet to come. Without such feedback, an audience will often puzzle whether something you are
currently introducing will be explained in more detail later on or not.

e You can click on all parts of the navigation bar. This will directly “jump” you to the part you have
clicked on. This is particularly useful to skip certain parts of your talk and during a “question session,”
when you wish to jump back to a particular frame someone has asked about.

Some navigation bars can be “compressed” using the following option:

\documentclass [compress]{beamer}

Tries to make all navigation bars as small as possible. For example, all small frame representations in
the navigation bars for a single section are shown alongside each other. Normally, the representations
for different subsections are shown in different lines. Furthermore, section and subsection navigations
are compressed into one line.

When you click on one of the icons representing a frame in a navigation bar (by default this is icon is a
small circle), the following happens:

e If you click on (the icon of) any frame other than the current frame, the presentation will jump to the
first slide of the frame you clicked on.

e If you click on the current frame and you are not on the last slide of this frame, you will jump to the
last slide of the frame.

e If you click on the current frame and you are on the last slide, you will jump to the first slide of the
frame.

By the above rules you can:
e Jump to the beginning of a frame from somewhere else by clicking on it once.
e Jump to the end of a frame from somewhere else by clicking on it twice.
e Skip the rest of the current frame by clicking on it once.

I also tried making a jump to an already-visited frame jump automatically to the last slide of this frame.
However, this turned out to be more confusing than helpful. With the current implementation a double-click
always brings you to the end of a slide, regardless from where you “come.”

By clicking on a section or subsection in the navigation bar, you will jump to that section. Clicking on
a section is particularly useful if the section starts with a \tableofcontents [current], since you can use
it to jump to the different subsections.

By clicking on the document title in a navigation bar (not all themes show it), you will jump to the first
slide of your presentation (usually the title page) except if you are already at the first slide. On the first
slide, clicking on the document title will jump to the end of the presentation, if there is one. Thus by double
clicking the document title in a navigation bar, you can jump to the end.

5.3.2 Using the Navigation Symbols

Navigation symbols are small icons that are shown on every slide by default. The following symbols are
shown:

1. A slide icon, which is depicted as a single rectangle. To the left and right of this symbol, a left and
right arrow are shown.

2. A frame icon, which is depicted as three slide icons “stacked on top of each other”. This symbols is
framed by arrows.

3. A subsection icon, which is depicted as a highlighted subsection entry in a table of contents. This
symbols is framed by arrows.

51

4. A section icon, which is depicted as a highlighted section entry (together with all subsections) in a
table of contents. This symbols is framed by arrows.

5. A presentation icon, which is depicted as a completely highlighted table of contents.

6. An appendix icon, which is depicted as a completely highlighted table of contents consisting of only
one section. (This icon is only shown if there is an appendix.

7. Back and forward icons, depicted as circular arrows.
8. A “search” or “find” icon, depicted as a detective’s magnifying glass.

Clicking on the left arrow next to an icon always jumps to (the last slide of) the previous slide, frame,
subsection, or section. Clicking on the right arrow next to an icon always jump to (the first slide of) the
next slide, frame, subsection, or section.

Clicking on any of these icons has different effects:

1. If supported by the viewer application, clicking on a slide icon pops up a window that allows you to
enter a slide number to which you wish to jump.

2. Clicking on the left side of a frame icon will jump to the first slide of the frame, clicking on the right
side will jump to the last slide of the frame (this can be useful for skipping overlays).

3. Clicking on the left side of a subsection icon will jump to the first slide of the subsection, clicking on
the right side will jump to the last slide of the subsection.

4. Clicking on the left side of a section icon will jump to the first slide of the section, clicking on the right
side will jump to the last slide of the section.

5. Clicking on the left side of the presentation icon will jump to the first slide, clicking on the right side
will jump to the last slide of the presentation. However, this does not include the appendix.

6. Clicking on the left side of the appendix icon will jump to the first slide of the appendix, clicking on
the right side will jump to the last slide of the appendix.

7. If supported by the viewer application, clicking on the back and forward symbols jumps to the previ-
ously visited slides.

8. If supported by the viewer application, clicking on the search icon pops up a window that allows you
to enter a search string. If found, the viewer application will jump to this string.

You can reduce the number of icons that are shown or their layout by adjusting the navigation symbols
template, see Section 8.4.13.

5.4 Command for Creating the Local Structure

Just like your whole presentation, each frame should also be structured. A frame that is solely filled with
some long text is very hard to follow. It is your job to structure the contents of each frame such that, ideally,
the audience immediately seems which information is important, which information is just a detail, how the
presented information is related, and so on.

ETEX provides different commands for structuring text “locally,” for example, via the itemize envi-
ronment. These environments are also available in the beamer class, although their appearance has been
slightly changed. Furthermore, the BEAMER class also defines some new commands and environments, see
below, that may help you to structure your text.

5.4.1 Itemizations, Enumerations, and Descriptions

There are three predefined environments for creating lists, namely enumerate, itemize, and description.
The first two can be nested to depth two, but not further (this would create totally unreadable slides).

The \item command is overlay-specification-aware. If an overlay specification is provided, the item will
only be shown on the specified slides, see the following example. If the \item command is to take an optional
argument and an overlay specification, the overlay specification can either come first as in \item<1>[Cat]
or come last as in \item[Cat]<1>.

52

\frame
{
There are three important points:
\begin{enumerate}
\item<1-> A first one,
\item<2-> a second one with a bunch of subpoints,
\begin{itemize}
\item first subpoint. (Only shown from second slide on!).
\item<3-> second subpoint added on third slide.
\item<4-> third subpoint added on fourth slide.
\end{itemize}
\item<5-> and a third one.
\end{enumerate}

}

\begin{itemize} [<(default overlay specification)>]
(environment contents)
\end{itemize}

Used to display a list of items that do not have a special ordering. Inside the environment, use an \item
command for each topic. The appearance of the items can be changed using templates, see Section 8.4.

If the optional parameter (default overlay specification) is given, in every occurence of an \item command
that does not have an overlay specification attached to it, the (default overlay specification) is used. By
setting this specificaiton to be an incremental overlay specification, see Section 4.1.4, you can implement,
for example, a step-wise uncovering of the items. The (default overlay specification) is inherited by
subenvironments. Naturally, in a subenvironment you can reset it locally by setting it to <1->.

FEzxzample:

\begin{itemize}

\item This is important.
\item This is also important.
\end{itemize}

FEzxzample:

\begin{itemizel} [<+->]

\item This is shown from the first slide on.
\item This is shown from the second slide on.
\item This is shown from the third slide on.
\item<1-> This is shown from the first slide on.
\item This is shown from the fourth slide on.
\end{itemize}

FExample:

\begin{itemize} [<+-| alert@+>]

\item This is shown from the first slide on and alerted on the first slide.
\item This is shown from the second slide on and alerted on the second slide.
\item This is shown from the third slide on and alerted on the third slide.
\end{itemize}

FEzxzample:
\newenvironment{mystepwiseitemize}{\begin{itemize} [<+-| alert@+>]}{\end{itemize}}
LYX Unfortunately, currently you cannot specify optional arguments with the itemize environment. You

can, however, use the command \beamerdefaultoverlayspecification before the environment to get
the desired effect.

\begin{enumerate} [<(default overlay specification)>] [{(mini template)]
(environment contents)
\end{enumerate}

Used to display a list of items that are ordered. Inside the environment, use an \item command for
each topic. By default, before each item increasing Arabic numbers followed by a dot are printed (as in
“1.” and “2.”). This can be changed by specifying a different template, see Section 8.4.16.

53

The first optional argument (default overlay specification) has exactly the same effect as for the itemize
environment. It is “detected” by the opening <-sign in the (default overlay specification). Thus, if there
is only one optional argument and if this argument does not start with <, then it is considered to be a
(mini template).

The syntex of the (mini template) is the same as the syntax of mini templates in the enumerate
package (you do not need to include the enumerate package, this is done automatically). Roughly
spoken, the text of the (mini template) is printed before each item, but any occurrence of a 1 in the
mini template is replaced by the current item number, an occurrence of the letter A is replaced by the
ith letter of the alphabet (in uppercase) for the ith item, and the letters a, i, and I are replaced by the
corresponding lowercase letters, lowercase Roman letters, and uppercase Roman letters, respectively.
So the mini template (i) would yield the items (i), (ii), (iii), (iv), and so on. The mini template A.)
would yield the items A.), B.), C.), D.) and so on. For more details on the possible mini templates,
see the documentation of the enumerate package. Note that there is also a template that governs the
appearance of the mini template (for example, to change its color), see Section 8.4.16.

FExample:

\begin{enumerate}

\item This is important.
\item This is also important.
\end{enumerate}

\begin{enumerate}[(i)]
\item First Roman point.
\item Second Roman point.
\end{enumerate}

\begin{enumerate} [<+->] [(1)]

\item First Roman point.

\item Second Roman point, uncovered on second slide.
\end{enumerate}

ARTICLE To use the (mini template), you have to include the package enumerate.

LYX The same constraints as for itemize apply.

\begin{description} [<(default overlay specification)>] [{long text)]
(environment contents)
\end{description}

Like itemize, but used to display an list that explains or defines labels. The width of (long text) is
used to set the indent. Normally, you choose the widest label in the description and copy it here.

As for enumerate, the (default overlay specification) is detected by an opening <. The effect is the same
as for enumerate and itemize.

Ezxample:

\begin{description}

\item[Lion] King of the savanna.
\item[Tiger] King of the jungle.
\end{description}

\begin{description}[longest labell
\item<1->[short] Some text.
\item<2->[longest label] Some text.
\item<3->[long label] Some text.
\end{description}

FEzxzample: The following has the same effect as the previous example:

\begin{description} [<+->] [longest labell
\item[short] Some text.

\item[longest label] Some text.
\item[long label] Some text.
\end{description}

54

LYX Since you cannot specify the optional argument in LyX, if you wish to specify the width, you must use
the command \usedescriptionitemofwidthas, which you must insert in TEX-mode shortly before the
environment.

\usedescriptionitemofwidthas{(long text)}

This command overrides the default width of the description label by the width of (long text) for the
current TEX group. You should only use this command if, for some reason or another, you cannot give
the (long text) as an argument to the description environment. This happens, for example, if you
create a description environment in LyX.

Ezxample:

\usedescriptionitemofwidthas{longest label}
\begin{description}

\item<1->[short] Some text.
\item<2->[longest label] Some text.
\item<3->[long label] Some text.
\end{description}

5.4.2 Hilighting

The BEAMER class predefines a commands and environments for hlighting text. Using these commands
makes is easy to change the appearance of a document by changing the theme.

\alert<(overlay specification)>{{hilighted text)}

The given text is hilighted, typically be coloring the text red. If the (overlay specification) is present,
the command only has an effect on the specified slides.

FEzample: This is \alert{important}.
ARTICLE Alerted text is typeset as emphasized text. This can be changed by specifying another template.

LYX You need to use TEX-mode to insert this command.
\begin{alertenv}<(overlay specification)>

(environment contents)
\end{alertenv}

Environment version of the \alert command.

\structure<{overlay specification)>{(text)}

The given text is marked as part of the structure, typically by coloring it in the structure color. If the
(overlay specification) is present, the command only has an effect on the specified slides.

Example: \structure{Paragraph Heading.}
ARTICLE Structure text is typeset as bold text. This can be changed by specifying another template.

LYX You need to use TEX-mode to insert this command.

\begin{structureenv}<(overlay specification)>
(environment contents)
\end{structureenv}

Environment version of the \structure command.

5.4.3 Block Environments

The BEAMER class predefines an environment for typesetting a “block” of text that has a heading. The
appearence of the block is governed by a template.

\begin{block}<(action specification)>{{block title)}<(action specification)>
(environment contents)

55

\end{block}

Only one (action specification) may be given. Inserts a block, like a definition or a theorem, with the
title (block title). If the (action specification) is present, the given actions are taken on the specified
slides, see Section 4.1.3. In the example, the definition is shown only from slide 3 onward.

FEzxzample:

\begin{block}<3->{Definition}
A \alert{set} consists of elements.
\end{block}

ARTICLE The block name is typeset in bold.

LyX The argument of the block must (currently) be given in TEX-mode. More precisely, there must be an
opening brace in TEX-mode and a closing brace in TEX-mode around it. The text in between can also
be typeset using LiyX. I hope to get rid of this some day.

\begin{alertblock}<(action specification)>{(block title)}<{action specification)>
(environment contents)
\end{alertblock}

Inserts a block whose title is hilighted. Behaves like the block environment otherwise.

Ezxample:

\begin{alertblock}{Wrong Theorem}
$1=2%.
\end{alertblock}

ARTICLE The block name is typeset in bold and is emphasized.

LYX Same applies as for block.

\begin{exampleblock}<(action specification)>{{block title)}<{overlay specification)>
(environment contents)
\end{exampleblock}

Inserts a block that is supposed to be an example. Behaves like the block environment otherwise.

Ezample: In the following example, the block is completely suppressed on the first slide (it does not
even occupy any space).
\begin{exampleblock}{Example}<only@2->
The set $\{1,2,3,5\}$ has four elements.
\end{exampleblock}

ARTICLE The block name is typeset in italics.

LYX Same applies as for block.

LYX Overlay specifications must be given right at the beginning of the environments and in TEX-mode.

5.4.4 Theorem Environments

The BEAMER class predefines several environments, like theorem or definition or proof, that you can use
to typeset things like, well, theorems, definitions, or proofs. The complete list is the following: theorem,
corollary, definition, definitions, fact, example, and examples. The following German block en-
vironments are also predefined: Problem, Loesung, Definition, Satz, Beweis, Folgerung, Lemma, Fakt,
Beispiel, and Beispiele.

Here is a typical example on how to use them:

\frame

{
\frametitle{A Theorem on Infinite Sets}

\begin{theorem}<1->

There exists an infinite set.
\end{theorem}

56

\begin{proof}<2->
This follows from the axiom of infinity.
\end{proof}

\begin{example}<3->[Natural Numbers]
The set of natural numbers is infinite.
\end{example}

In the following, only the English versions are discussed. The German ones behave analogously.

\begin{theorem}<(action specification)>[{additional text)]<{action specification)>
(environment contents)
\end{theorem}

Inserts a theorem. Only one (action specification) may be given. If present, the (additional text) is
shown behind the word “Theorem” is rounded brackets (although this can be changed by the template).

The appearance of the theorem is governed by templates, see Section 8.4.19 for details on how to change
these. Every theorem is put into a block environment, thus the templates for blocks also apply.

The theorem style (a concept from amsthm) used for this environment is plain. In this style, the body
of a theorem should be typeset in italics. The head of the theorem should be typeset in a bold font, but
this is usually overruled by the templates.

If the option envcountsect is given either as class option in one of the presentation modes or as an
option to the package beamerbasearticle in article mode, then the numbering of the theorems is local
to each section with the section number prefixing the theorem number; otherwise they are numbered
consecutively throughout the presentation or article. I recommend using this option in article mode.

By default, no theorem numbers are shown in the presentation modes.

FExample:
\begin{theorem} [Kummer, 1992]

If $\# _A"n$ is n-enumerable, then A is recursive.
\end{theorem}

\begin{theorem}<2->[Tantau, 2002]
If $\#_A"2$ is 2-fa-enumerable, then A is regular.
\end{theorem}

LYX Is present, the optional argument and the action specification must be given in TEX mode at the
beginning of the environment.

The environments corollary, fact, and lemma behave exactly the same way.

\documentclass[envcountsect]{beamer}

Causes theorems, definitions, and so on to be numbered locally to each section. Thus, the first theorem of
the second section would be Theorem 2.1 (assuming that there are no definitions, lemmas, or corollaries
earlier in the section).

\begin{defintion}<(action specification)> [{additional text)]<(action specification)>
(environment contents)
\end{defintion}

Behaves like the theorem environment, except that the theorem style definition is used. In this style,
the body of a theorem is typeset in an upright font.

The environment definitions behaves exactly the same way.

\begin{example}<(action specification)>[{additional text)]1<{action specification)>
(environment contents)
\end{example}

Behaves like the theorem environment, except that the theorem style example is used. A side-effect
of using this theorem style is that the (environment contents) is put in an exampleblock instead of a
block.

57

BEAMER

ARTICLE

The environment examples behaves exactly the same way.

Some remarks on numbered theorems:
The default template for typesetting theorems suppresses the theorem number, even if this number is “avail-
able” for typesetting (which it is by default in all predefined environments; but if you define your own
environment using \newtheorem* no number will be available). I would like to discourage using numbered
theorems in a presentation. The audience has no chance of remembering these numbers. Never say things
like “now, by Theorem 2.5 that I showed you earlier, we have ...” It would be much better to refer to, say,
Kummer’s Theorem instead of Theroem 2.5. If Theorem 2.5 is some obscure theorem that does not have its
own name (like Kummer’s Theorem or Main Theorem or Second Main Theorem or Key Lemma), then the
audience will have forgotten about it anyway by the time you refer to it again.

In my opinion, the only situtation in which numbered theorems make sense in a presentation is in a
lecture, in which the students can read lecture notes in parallel to the lecture where the theorems are
numbered in exactly the same way.

In article mode, theorems are automatically numbered. By specifying the option envcountsect, theorems
will be numbered locally to each section, which is usually a good idea, except for very short articles.

The predefined environments number everything consecutively. Thus if there are one theorem, one lemma,
and one definition, you would have Theorem 1, Lemma 2, and Definition 3. Some people prefer all three
to be numbered 1. I would strongly like to discourage this. The problem is that this makes it virtually
impossible to find anything since Theorem 2 might come after Definition 10 or the other way round. Papers
and, worse, books that have a Theorem 1 and a Definition 1 are a pain. Do not inflict pain on other people.

\begin{proof}<(action specification)>[{proof name)l<{action specification)>
(environment contents)
\end{proof}

Typesets a proof. If the optional (proof name) is given, it completely replaces the word “Proof.” This
is different from normal theorems, where the optional argument is shown in brackets.

At the end of the theorem, a \qed symbol is shown, except if you say \qgedhere earlier in the proof (this is
exactly as in amsthm). The default \qed symbol is a filled rectangle. To completely suppress the symbol,
write \def\gedsymbol{} in your preamble. To get an open rectangle, say \def\gedsymbol{\openbox}.
Adding \color{beamerstructure} might also be a good idea.

If you use babel and a different language, the text “Proof” is replaced by whatever is appropriate in
the selected language.

FExample:

\begin{proof}<2->[Sketch of proof]
Suppose ...
\end{proof}

You can define new environments using the following command:

\newtheorem*{(environment name)} [(numbered same as)1{(head text)} [(number within)]

This command is used exactly the same way as in the amsthm package (as a matter of fact, it is the
command from that package), see its documentation. The only difference is that environments declared
using this command are overlay-specification-aware in BEAMER and that, when typeset, are typeset
according to BEAMER’s templates.

ARTICLE Environments declared using this command are also overlay-specification-aware in article mode.

Ezxample: \newtheorem{observation} [theorem] {Observation}

You can also use amsthm’s command \newtheoremstyle to define new theorem styles. Note that the
default template for theorems will ignore any head font setting, but will honor the body font setting.

If you wish to define the environments like theorem differently (for example, have it numbered within each
subsection), you can use the following class option to disable the definition of the predefined environments:

\documentclass[notheorems]{beamer}

Switches off the definition of default blocks like theorem, but still loads amsthm and makes theorems
overlay-specificiation-aware.

58

The option is also available as a package option for beamerbasearticle and has the same effect.

ARTICLE In the article version, the package amsthm sometimes clashes with the document class. In this case you
can use the following option, which is once more available as a class option for BEAMER and as a package
option for beamerbasearticle, to switch off the loading of amsthm altogether.

\documentclass [noamsthm] {beamer}

Does not load amsthm and also not amsmath. Environments like theorem or proof will not be available.

5.4.5 Framed Text

In order to draw a frame (a rectangle) around some text, you can use IWTEXs standard command \fbox.
More frame types are offered by the package fancybox, which defines the following commands: \shadowbox,
\doublebox, \ovalbox, and \Ovalbox. Please consult the IXTEX Companion for details on how to use these
commands.

The BEAMER class also defines an environment for creating boxes:

\begin{beamerboxesrounded} [{options)]{(head)}
(environment contents)
\end{beamerboxesrounded}

The text inside the environment is framed by a rectangular area with rounded corners. The background
of the rectangular area is filled with a certain color, which depends on the current color scheme (see
below). If the (head) is not empty, (head) is drawn in the upper part of the box in a different color,
which also depends on the scheme. The following options can be given:

e scheme=(name) causes the color scheme (name) to be used. A color scheme must previously be
defined using the command \beamerboxesdeclarecolorscheme.

e width=(dimension) causes the width of the text inside the box to be the specified (dimension). By
default, the \textwidth is used. Note that the box will protrude 4pt to the left and right.

e shadow=(true or false). If set to true, a shadow will be drawn.

A color scheme dictates the background colors used in the head part and in the body of the box. If no
(head) is given, the head part is completely suppressed.

FEzxzample:

\begin{beamerboxesrounded} [scheme=alert,shadow=true] {Theorem}
$A = BS$.
\end{beamerboxesrounded}

ARTICLE This environment is not available in article mode.

\beamerboxesdeclarecolorscheme{(scheme name)}{(head color)}{{body color)}

Declares a color scheme for later use in a beamerboxesrounded environment.
Example: \beamerboxesdeclarecolorscheme{alert}{red}{red!15!averagebackgroundcolor}

ARTICLE This environment is not available in article mode.

5.4.6 Figures and Tables

You can use the standard BTEX environments figure and table much the same way you would normally
use them. However, any placement specification will be ignored. Figures and tables are immediately inserted
where the environments start. If there are too many of them to fit on the frame, you must manually split
them among additional frames.

Ezxample:

\frame{
\begin{figure}
\pgfuseimage{myfigure}
\caption{This caption is placed below the figure.}
\end{figure}

59

\begin{figure}
\caption{This caption is placed above the figure.}
\pgfuseimage{myotherfigure}
\end{figure}
}

You can adjust how the figure and table captions are typeset by changing the corresponding template,
see Section 8.4.15.

5.4.7 Splitting a Frame into Multiple Columns

The BEAMER class offers several commands and environments for splitting (perhaps only part of) a frame
into multiple columns. These commands have nothing to do with KTEX’s commands for creating columns.
Columns are especially useful for placing a graphic next to a description/explanation.

The main environment for creating columns is called columns. Inside this environment, you can either
place several column environments, each of which creates a new column, or use the \column command to
create new columns.

\begin{columns} [{options)]
(environment contents)
\end{columns}

A multi-column area. Inside the environment you should place only column environments or \column
commands (see below). The following (options) may be given:
e b will cause the bottom lines of the columns to be vertically aligned.

e c will cause the columns to be centered vertically relative to each other. Default, unless the global
option slidestop is used.

e onlytextwidth is the same as totalwidth=\textwidth.

t will cause the first lines of the columns to be aligned. Default if global option slidestop is used.

totalwidth=(width) will cause the columns to occupy not the whole page width, but only (width),
all told.

FExample:
\begin{columns}[t]
\begin{column}{5cm}
Two\\lines.
\end{column}
\begin{column}{5cm}
One line (but aligned).
\end{column}
\end{columns}

Ezxample:

\begin{columns}[t]
\column{5cm}
Two\\lines.

\column{5cm}
One line (but aligned).
\end{columns}

ARTICLE This environment is ignored in article mode.

LyX Use “Columns” or “ColumnsTopAligned” to create a columns environment. To pass options, insert
then in TEX-mode right at the beginning of the environment in square brackets.

To create a column, you can either use the column environment or the \column command.

\begin{column} [{placemnent)]{{column width)}
(environment contents)

60

\end{column}

Creates a single column of width (column width). The vertical placement of the enclosing columns
environment can be overruled by specifying a specific (placement) (t for top, c for centered, and b for
bottom).

Example: The following code has the same effect as the above examples:
\begin{columns}
\begin{column}[t]{5cm}
Two\\lines.
\end{column}
\begin{column}[t]{5cm}
One line (but aligned).
\end{column}
\end{columns}

ARTICLE This command is ignored in article mode.

LYX The “Column” styles insert the command version, see below.

\column [(placement)]{{column width)}

Starts a single column. The parameters and options are the same as for the column environment. The
column automatically ends with the next occurrence of \column or of a column environment or of the
end of the current columns environment.

Ezxample:

\begin{columns}
\column[t]{5cm}
Two\\lines.
\column[t]{5cm}
One line (but aligned).
\end{columns}

ARTICLE This command is ignored in article mode.

LYX In a “Column” style, the width of the column must be given as normal text, not in TEX-mode.

5.4.8 Positioning Text and Graphics Absolutely

Normally, BEAMER uses TEX’s normal typesetting mechanism to position text and graphics on the page. In
certain situation you may instead wish a certain text or graphic to appear at a page position that is specified
absolutely. This means that the position is specified relative to the upper left corner of the slide.

The package textpos provides several commands for positioning text absolutely and it works together
with BEAMER. When using this package, you will typically have to specify the options overlay and perhaps
absolute. For details on how to use the package, please see its documentation.

5.4.9 Verse, Quotations, Quotes

ETEX defines three environments for typesetting quotations and verses: verse, quotation, and quote.
These environments are also available in the BEAMER class, where they are overlay-specification-aware. If
an overlay specification is given, the verse or quotation is shown only on the specified slides and is covered
otherwise. The difference between a quotation and a quote is that the first has paragraph indentation,
whereas the second does not.

Unlike the standard KTEX environments, in BEAMER these environments do not only change the left
and right margins, but also the font: A verse is typeset using an italic serif font, quotations and quotes are
typeset using an italic font (whether serif or sans-serif depends on the standard document font). To change
this, you can adjust the templates for these environments.

5.4.10 Footnotes

First a word of warning: Using footnote is usually not a good idea. They disrupt the flow of reading.
You can use the usual \footnote command. It has been augmented to take by an additional option, for
placing footnotes at the frame bottom instead of at the bottom of the current minipage.

61

\footnote [(options)]{(text)}

Inserts a footnote into the current frame. Footnotes will always be shown at the bottom of the current
frame; they will never be “moved” to other frames. As usual, one can give a number as (options), which
will cause the footnote to use that number. The BEAMER class adds one additional option:

e frame causes the footnote to be shown at the bottom of the frame. This is normally the default
behavior anyway, but in minipages and certain blocks it makes a difference. In a minipage, the
footnote is usually shown as part of the minipage rather than as part of the frame.

FEzxzample: \footnote{On a fast machine.}

Ezample: \footnote [frame,2]{Not proved.}

You can change the way footnotes are typeset by changing the footnote templates, see Section 8.4.14

6 Graphics, Colors, Animations, and Special Effects

6.1 Graphics

Graphics often convey concepts or ideas much more efficiently than text: A picture can say more than a
thousand words. (Although, sometimes a word can say more than a thousand pictures.) In the following,
the advantages and disadvantages of different possible ways of creating graphics for beamer presentations
are discussed.

6.1.1 Including External Graphic Files

One way of creating graphics for a presentation is to use an external program, like xfig or the Gimp. These
programs have an option to export graphic files in a format that can then be inserted into the presentation.
The main advantage is:

e You can use a powerful program to create a high-quality graphic.
The main disadvantages are:

e You have to worry about many files. Typically there are at least two for each presentation, namely
the program’s graphic data file and the exported graphic file in a format that can be read by TEX.

e Changing the graphic using the program does not automatically change the graphic in the presentation.
Rather, you must reexport the graphic and rerun IATEX.

e It may be difficult to get the line width, fonts, and font sizes right.
e Creating formulas as part of graphics is often difficult or impossible.

You can use all the standard I¥TEX commands for inserting graphics, like \includegraphics (be sure
to use the package graphics). Also, the pgf package offers commands for including graphics. Either will
work fine in most situations, so choose whichever you like. Like \pgfdeclareimage, \includegraphics also
includes an image only once in a .pdf file, even if it used several times (as a matter of fact, the graphics
package is even a bit smarter about this than pgf). However, currently only pgf offers the ability to include
images that are partly transparent.

There are few things to note about the format of graphics you can include:

e When using latex and dvips, you can only include external graphic files ending with the extension
.eps (Encapsulated PostScript). This is true both for the normal graphics package and for pgf.
When using pgf, do not add the extension .eps. When using graphics, do add the extension. If your
graphic file has a different format (like a . jpg file), you must first convert it to an .eps file using some
conversion program.

e When using pdflatex, you can only include external graphic files ending with one of the extensions
.pdf, .jpg, -jpeg, or .png. As before, do not add these extension when using pgf, but do add them
when using graphics. If your graphic file has a different format, you have to convert it.

62

LYX

LYX

Note that, most frustratingly, there is no graphic format that can be read by both pdflatex and dvips.

You can use the usual “Insert Graphic” command to insert a graphic.

The commands \includegraphics, \pgfuseimage, and \pgfimage are overlay-specification-aware in
BEAMER. If the overlay specification does not apply, the command has no effect. This is useful for creating
a simple animation where each picture of the animation resides in a different file:

\frame{
\includegraphics<1>[height=2cm] {stepl.pdf}
\includegraphics<2>[height=2cm]{step2.pdf}
\includegraphics<3>[height=2cm]{step3.pdf}
}

6.1.2 Inlining Graphic Commands

A different way of creating graphics is to insert graphic drawing commands directly into your IXTEX file.
There are numerous packages that help you do this. They have various degrees of sophistication. Inlining
graphics suffers from none of the disadvantages mentioned above for including external graphic files, but
the main disadvantage is that it is often hard to use these packages. In some sense, you “program” your
graphics, which requires a bit of practice.

When choosing a graphic package, there are a few things to keep in mind:

e Many packages produce poor quality graphics. This is especially true of the standard picture envi-
ronment of BTEX.

e Powerful packages that produce high-quality graphics often do not work together with pdflatex.

e The most powerful and easiest-to-use package around, namely pstricks, does not work together with
pdflatex and this is a fundamental problem. Due to the fundamental differences between PDF and
PostScript, it is not possible to write a “pdflatex back-end for pstricks.”

A solution to the above problem (though not necessarily the best) is to use the PGF package. It produces
high-quality graphics and works together with pdflatex, but also with normal latex. It is not as powerful
as pstricks (as pointed out above, this is because of rather fundamental reasons) and not as easy to use,
but it should be sufficient in most cases.

Inlined graphics must currently by inserted in a large TEX-mode box. This is not very convenient.

6.2 Color Management

The color management of the BEAMER class relies on the packages xcolor, which is a stand-alone extension
of the color package, and on xxcolor, which in turn is an extension of xcolor and is part of PGF. Hopefully,
in the future xxcolor and xcolor will merge into one package and perhaps they will someday also merge
together with color.

Since the color package and the xcolor package are loaded already by the BEAMER class, in order to pass
options to these classes, you need to use the class options color={{options for color)} or xcolor={(options
for zcolor)} to pass options to these classes.

6.2.1 Colors of Main Text Elements
By default, the following colors are used in a presentation:
e Normal text is typeset in black.

e All “structural” elements, like titles, navigation bars, block titles, and so on, are typeset using the color
beamerstructure. By default, this color is bluish. Using one of the class options red, blackandwhite,
or brown changes this. You can also change this color simply be redefining the color beamerstructure.

e All “alert” text is typeset by setting the default color and the structure color to 85% of red. To change
this, you can either redefine the color beameralert, or you can change the whole alert template.

e All examples are typeset using 50% of green. To change this, you must change the example templates.

\documentclass [brown] {beamer}

Changes the main color of the navigation and title bars to a brownish color.

63

\documentclass[red] {beamer}

Changes the main color of the navigation and title bars to a reddish color.

\documentclass[blackandwhite] {beamer}

Changes the main color of the navigation and title bars to monochrome.

6.2.2 Average Background Color

In some situations, for example when creating a transparency effect, it is useful to have access to the current
background color. One can then, for example, mix a color with the background color to create a “transparent”
color.

Unfortunately, it is not always clear what exactly the background color is. If the background is a shading
or a picture, different parts of a slide have different background colors. In these cases, one can at least try
to mix-in an average background color, called averagebackgroundcolor. If a shading or picture is not too
colorful, this works fairly well.

To specify the average background color, use the following command:

\beamersetaveragebackground{(color expression)}

Installs the given color as the average background color. See the xcolor package for the syntax of color
expressions.

Example: \beamersetaveragebackground{red!10}

If you use the commands from Section 8.4.5 for installing a background coloring, the average background
color is computed automatically for you. When you directly use the command \usebackgroundtemplate,
you should must set the average background color afterward.

6.2.3 Transparency Effects

By default, covered items are not shown during a presentation. Thus if you write \uncover<2>{Text.},
the text is not shown on any but the second slide. On the other slide, the text is not simply printed using
the background color — it is not shown at all. This effect is most useful if your background does not have a
uniform color.

Sometimes however, you might prefer that covered items are not completely covered. Rather, you would
like them to be shown already in a very dim or shaded way. This allows your audience to get a feeling for
what is yet to come, without getting distracted by it. Also, you might wish text that is covered “once more”
still to be visible to some degree.

Ideally, there would be an option to make covered text “transparent.” This would mean that when
covered text is shown, it would instead be mixed with the background behind it. Unfortunately, pgf does
not support real transparency yet. Nevertheless, one can come “quite close” to transparent text using the
special command

\beamersetuncovermixins{#1}{#2}

This commands allows you to specify in a quite general way how a covered item should be rendered. You can
even specify different ways of rendering the item depending on how long it will take before this item is shown
or for how long it has already been covered once more. The transparency effect will automatically apply to
all colors, except for the colors in images and shadings. For images and shadings there is a workaround, see
the documentation of the PGF package.

As a convenience, several commands install a predefined uncovering behavior.

\beamertemplatetransparentcovered

Makes all covered text quite transparent.

\beamertemplatetransparentcoveredmedium

Makes all covered text even more transparent.

\beamertemplatetransparentcoveredhigh

Makes all covered text highly transparent.

64

\beamertemplatetransparentcoveredhigh

Makes all covered text extremely transparent, but not totally.

\beamertemplatetransparentcovereddynamic

Makes all covered text quite transparent, but is a dynamic way. The longer it will take till the text is
uncovered, the stronger the transparency.

\beamertemplatetransparentcovereddynamicmedium

Like the previous command, only it the “range” of dynamics is smaller.

\beamersetuncovermixins{(not yet list)}{(once more list)}

The (not yet list) specifies how to render covered items that have not yet been uncovered. The (once
more list) specifies how to render covered items that have once more been covered. If you leave one
of the specifications empty, the corresponding covered items are completely covered, that is, they are
invisible.

Ezxample:

\beamersetuncovermixins
{\opaqueness<1>{15}\opaqueness<2>{10}\opaqueness<3>{5}\opaqueness<4->{2}}
{\opaqueness<1->{15}}

The (not yet list) and the (once more list) can contain any number of \opaqueness commands.

\opaqueness<{overlay specification)>{{percentage of opaqueness)}

The (overlay specification) specifies on which slides covered text should have which (percentage of
opaqueness). Unlike other overlay specifications, this (overlay specification) is a “relative” overlay
specification. For example, the specification “3” here means “things that will be uncovered three slides
ahead,” respectively “things that have once more been covered for three slides.” More precisely, if
an item is uncovered for more than one slide and then covered once more, only the “first moment of
uncovering” is used for the calculation of how long the item has been covered once more.

An opaqueness of 100 is fully opaque and 0 is fully transparent. Currently, since real transparency
is not yet implemented, this command causes all colors to get a mixing of (percentage of opaqueness)
of the current averagebackgroundcolor. At some future point this command might result in real
transparency.

The alternate PGF extension used inside an opaque area is (percentage of opaqueness)opaque. In case
of nested calls, only the innermost opaqueness specification is used.
Example:

\beamersetuncovermixins{\opaqueness<1->{15}{\opaqueness<1->{15}}
\pgfdeclareimage{book}{book}
\pgfdeclareimage{book.150paque}{filenameforbooknearlytransparent}

Makes everything that is uncovered in two slides only 15 percent opaque.

6.3 Animations

A word of warning first: Animations can be very distracting. No matter how cute a rotating, flying theorem
seems to look and no matter how badly you feel your audience needs some action to keep it happy, most
people in the audience will typically feel you are making fun of them.

6.3.1 Using an External Viewer

If you have created an animation using some external program (like a renderer), you can use the capabilities
of the presentation program (like the Acrobat Reader) to show the animation. Unfortunately, currently there
is no portable way of doing this and even the Acrobat Reader does not support this feature on all platforms.

65

6.3.2 Animations Created by Showing Slides in Rapid Succession

You can create an animation in a portable way by using the overlay commands of the BEAMER package
to create a series of slides that, when shown in rapid succession, present an animation. This is a flexible
approach, but such animations will typically be rather static since it will take some time to advance from one
slide to the next. This approach is mostly useful for animations where you want to explain each “picture”
of the animation. When you advance slides “by hand,” that is, by pressing a forward button, it typically
takes at least a second for the next slide to show.

More “lively” animations can be created by relying on a capability of the viewer program. Some programs
support showing slides only for a certain number of seconds during a presentation (for the Acrobat Reader
this works only in full-screen mode). By setting the number of seconds to zero, you can create a rapid
succession of slides.

To facilitate the creation of animations using this feature, the following commands can be used: \animate
and \animatevalue.

\animate<{overlay specification)>

The slides specified by {overlay specification) will be shown only as shortly as possible.

FEzxzample:

\frameq{
\frametitle{A Five Slide Animation}
\animate<2-4>

The first slide is shown normally. When the second slide is shown
(presumably after pressing a forward key), the second, third, and
fourth slides ¢‘flash by.’’ At the end, the content of the fifth
slide is shown.

. code for creating an animation with five slides ...

}

ARTICLE This command is ignored in article mode.

\animatevalue<(start slide)-{end slide}>{(name)}{(start value)}{(end value)}

The (name) must be the name of a counter or a dimension. It will be varied between two values. For
the slides in the specified range, the counter or dimension is set to an interpolated value that depends
on the current slide number. On slides before the (start slide), the counter or dimension is set to (start
value); on the slides after the (end slide) it is set to (end value).

FExample:

\newcount\opaqueness
\frame{
\animate<2-10>
\animatevalue<1-10>{\opaqueness}{100}{0}
\begin{colormixin}{\the\opaqueness!averagebackgroundcolor}
\frametitle{Fadeout Frame}

This text (and all other frame content) will fade out when the
second slide is shown. This even works with
{\color{green!90!black}colored} \alert{text}.

\end{colormixin}

}

\newcount\opaqueness

\newdimen\offset

\frame{
\frametitle{Flying Theorems (You Really Shouldn’t!)}
\animate<2-14>
\animatevalue<1-15>{\opaqueness}{100}{0}
\animatevalue<1-15>{\offset}{0Ocm}{-5cm}

66

\begin{colormixin}{\the\opaqueness!averagebackgroundcolor}
\hskip\offset
\begin{minipage}{\textwidth}
\begin{theorem}
This theorem flies out.
\end{theorem}
\end{minipage}
\end{colormixin}

\animatevalue<1-15>{\opaqueness}{0}{100}
\animatevalue<1-15>{\offset}{-5cm}{Ocm}
\begin{colormixin}{\the\opaqueness!averagebackgroundcolor}
\hskip\offset
\begin{minipage}{\textwidth}
\begin{theorem}
This theorem flies in.
\end{theorem}
\end{minipage}
\end{colormixin}

3

ARTICLE This command is ignored in article mode.

6.4 Slide Transitions

PDF in general, and the Acrobat Reader in particular, offer a standardized way of defining slide transitions.
Such a transition is a visual effect that is used to show the slide. For example, instead of just showing the
slide immediately, whatever was shown before might slowly “dissolve” and be replaced by the slide’s content.

Slide transitions should be used with great care. Most of the time, they only distract. However, they
can be useful in some situations: For example, you might show a young boy on a slide and might wish to
dissolve this slide into slide showing a grown man instead. In this case, the dissolving gives the audience
visual feedback that the young boy “slowly becomes” the man.

There are a number of commands that can be used to specify what effect should be used when the current
slide is presented. Consider the following example:

\frame{
\pgfuseimage{youngboy}

}

\frame{
\transdissolve
\pgfuseimage{man}

}

The command \transdissolve causes the slide of the second frame to be shown in a “dissolved way.” Note
that the dissolving is a property of the second frame, not of the first one. We could have placed the command
anywhere on the frame.

The transition commands are overlay-specification-aware. We could collapse the two frames into one
frame like this:

\frame{
\only<1>{\pgfuseimage{youngboyl}}
\only<2>{\pgfuseimage{man}}
\transdissolve<2>

}

This states that on the first slide the young boy should be shown, on the second slide the old man should
be shown, and when the second slide is shown, it should be shown in a “dissolved way.”

In the following, the different commands for creating transitional effects are listed. All of them take an
optional argument that may contain a list of (key)=(value) pairs. The following options are possible:

e duration=(seconds). Specifies the number of (seconds) the transition effect needs. Default is one
second, but often a shorter one (like 0.2 seconds) is more appropriate. Viewer applications, especially
Acrobat, may interpret this option in slightly strange ways.

67

e direction=(degree). For “directed” effects, this option specifies the effect’s direction. Allowed values
are 0, 90, 180, 270, and for the glitter effect also 315.

ARTICLE All of these commands are ignored in article mode.
LYX You must insert these commands using TEX-mode.

\transblindshorizontal<({overlay specification)>[{options)]

Show the slide as if horizontal blinds where pulled away.
FEzxzample: \transblindshorizontal

\transblindsvertical<(overlay specification)>[{options)]

Show the slide as if vertical blinds where pulled away.
Ezxample: \transblindsvertical<2,3>

\transboxin<(overlay specification)> [{options)]

Show the slide by moving to the center from all four sides.
Ezxample: \transboxin<1>

\transboxout<{overlay specification)>[{options)]

Show the slide by showing more and more of a rectangular area that is centered on the slide center.
FEzxzample: \transboxout

\transdissolve<(overlay specification)>[{options)]
Show the slide by slowly dissolving what was shown before.
Ezxzample: \transdissolve[duration=0.2]
\transglitter<(overlay specification)> [{options)]
Show the slide with a glitter effect that sweeps in the specified direction.
Example: \transglitter<2-3>[direction=90]
\transsplitverticalin<{overlay specification)>[{options)]
Show the slide by sweeping two vertical lines from the sides inward.
Example: \transsplitverticalin
\transsplitverticalout<(overlay specification)> [{options)]
Show the slide by sweeping two vertical lines from the center outward.
Example: \transsplitverticalout
\transsplithorizontalin<{overlay specification)>[{options)]
Show the slide by sweeping two horizontal lines from the sides inward.
FEzample: \transsplithorizontalin

\transsplithorizontalout<(overlay specification)>[{options)]

Show the slide by sweeping two horizontal lines from the center outward.
Ezample: \transsplithorizontalout

\transwipe<{overlay specification)>[{options)]

Show the slide by sweeping a single line in the specified direction, thereby “wiping out” the previous
contents.

Example: \transwipe[direction=90]

You can also specify how long a given slide should be shown, using the following overlay-specification-
aware command:

\transduration<(overlay specification)>{{number of seconds)}

In full screen mode, show the slide for (number of seconds). In zero is specified, the slide is shown as
short as possible. This can be used to create interesting pseudo-animations.

Ezxample: \transduration<2>{1}

68

7 Managing Non-Presentation Versions and Material

The BEAMER package offers different ways of creating special versions of your talk and adding material that
are not shown during the presentation. You can create a handout version of the presentation that can be
distributed to the audience. You can also create a version that is more suitable for a presentation using an
overhead projector. You can add notes for yourself that help you remember what to say for specific slides.
Finally, you can have a completely independent “article” version of your presentation coexist in your main
file. All special versions are created by specifying different class options and rerunning TEX on the main file.

7.1 Creating Handouts

A handout is a version of a presentation in which the slides are printed on paper and handed out to the
audience before or after the talk. (See Section 3.4.2 for how to place numerous frames on one pages, which
is very useful for handouts.) For the handout you typically want to produce as few slides as possible per
frame. In particular, you do not want to print a new slide for each slide of a frame. Rather, only the “last”
slide should be printed.

In order to create a handout, specify the class option handout. If you do not specify anything else, this
will cause all overlay specifications to be suppressed. For most cases this will create exactly the desired
result.

\documentclass[handout] {beamer}

Create a version that uses the handout overlay specifications.

In some cases, you may want a more complex behaviour. For example, if you use many \only commands
to draw an animation. In this case, suppressing all overlay specifications is not such a good idea, since this
will cause all steps of the animation to be shown at the same time. In some cases this is not desirable. Also,
it might be desirable to suppress some \alert commands that apply only to specific slides in the handout.

For a fine-grained control of what is shown on a handout, you can use mode specifications. They specify
which slides of a frame should be shown for a special version, for example for the handout version. As
explained in Section 4.1, a mode specification is written alongside the normal overlay specification inside the
pointed brackets. It is separated from the normal specification by a vertical bar and a space. Here is an
example:

\only<1-3,5-9| handout:2-3,5>{Text}

This specification says: “Normally (in beamer mode), insert the text on slides 1-3 and 5-9. For the handout
version, insert the text only on slides 2, 3, and 5.” If no special mode specification is given for handouts,
the default is “always.” This causes the desirable effect that if you do not specify anything, the overlay
specification is effectively suppressed for the handout.

An especially useful specification is the following:

\only<3| handout:0>{Not shown on handout.}

Since there is no zeroth slide, the text is not shown. Likewise, \alert<3| handout:0>{Text} will not alert
the text on a handout.

You can also use a mode specification for the overlay specification of the \frame command as in the
following example.

\frame<1-| handout:0>{Text...}

This causes the frame to be suppressed in the handout version. Also, you can restrict the presentation such
that only specific slides of the frame are shown on the handout:

\frame<1-| handout:4-5>{Text...}

It is also possible to give only an alternate overlay specification. For example, \alert<handout:0>{...}
causes the text to be always hilighted during the presentation, but never on the handout version. Likewise,
\frame<handout:0>{...} causes the frame to be suppressed for the handout.

Finally, note that it is possible to give more than one alternate overlay specification and in any order.
For example, the following specification states that the text should be inserted on the first three slides in
the presentation, in the first two slides of the transparency version, and not at all in the handout.

\only<trans:1-2| 1-3| handout:0>{Text}

69

LYX

If you wish to give the same specification in all versions, you can do so by specifying all: as the version.
For example,

\frame<all:1-2>
{

blah...
}

ensures that the frame has two slides in all versions.

7.2 Creating Transparencies

The main aim of the BEAMER class is to create presentations for beamers. However, it is often useful to
print transparencies as backup, in case the hardware fails. A transparencies version of a talk often has less
slides than the main version, since it takes more time to switch slides, but it may have more slides than the
handout version. For example, while in a handout an animation might be condensed to a single slide, you
might wish to print several slides for the transparency version.

You can use the same mechanism as for creating handouts: Specify trans as a class option and add
alternate transparency specifications for the trans version as needed. An elaborated example of different
overlay specifications for the presentation, the handout, and the transparencies can be found in the file
beamerexamplel.tex.

\documentclass[trans] {beamer}

Create a version that uses the trans overlay specifications.

When printing a presentation using Acrobat, make sure that the option “expand small pages to paper
size” in the printer dialog is enabled. This is necessary, because slides are only 128mm times 96mm.

7.3 Adding Notes

A note is a small piece of paper that is intended as a reminder to yourself of what you should say or should
keep in mind when presenting a slide.

7.3.1 Specifying Note Contents

To add a note to a slide or a frame, you should use the \note command. This command can be used
both inside and outside frames, but it has quite different behaviors then: Inside frames, \note commands
accumulate and append a single note page after the current slide; outside frames each \note directly inserts
a single note page with the given parameter as contents. Using the \note command inside frames is usually
preferably over using them outside, since only commands issued inside frames profit from the class option
onlyslideswithnotes, see below.

In LyX, only the inside-frame \note command with the option [item] is available in the form of the Noteltem
style.

Inside a frame, the effect of \note(text) is the following: When you use it somewhere inside the frame
on a specific slide, a note page is created after the slide, containing the (text). Since you can add an overlay
specification to the \note command, you can specify after which slide the note should be shown. If you use
multiple \note commands on one slide, they “accumulate” and are all shown on the same note.

To make the accumulation of notes more convenient, you can use the \note command with the option
[item]. The notes added with this option are accumulated in an enumerate list that follows any text
inserted using \note.

The following example will produce one note page that follows the second slide and has two entries.

\frame{

\begin{itemize}

\item<1-> Eggs

\item<2-> Plants
\note[item]<2>{Tell joke about plants.}
\note [item]<2>{Make it short.}

\item<3-> Animals

\end{itemize}

70

Outside frames, the command \note. It create a single note page. It is “independent” of any usage of
the \note commands inside the previous frame. If you say \note inside a frame and \note right after it,
two note pages are created.

In the following, the syntax and effects of the \note command inside frames is described:

\note<(overlay specification)>[{options)]1{{note text)}
Effects inside frames:

This command addends to (note text) to the note that follows the current slide. Multiple uses of this
command on a slide accumulate. If you do not specify an (overlay specification), the note will be added
to all slides of the current frame. This often not what you want, so adding a specification like <1> is
usually a good idea.

The following (options) may be given:

e item causes the note to be put as an item in a list that is shown at the end of the note page.

Example: \note<2>{Do not talk longer than 2 minutes about this.}
ARTICLE Notes are ignored in article mode.

LYX Use the Noteltem style to insert a note item.
Next, the syntax and effects of the \note command outside frames is described:

\note [{options)]1{(note text)}

Outside frames, this command creates a note page. This command is not affected by the option
notes=onlyframeswithnotes, see below.

The following (options) may be given:

e itemize will enclose the whole note page in an itemize environment. This is just a convenience.

e cnumerate will enclose the whole note page in an enumerate environment.

FEzample:

\frame{some text}
\note{Talk no more than 1 minute.}

\note [enumerate]

{

\item Stress this first.
\item Then this.

}

ARTICLE Notes are ignored in article mode.

7.3.2 Specifying Which Notes and Frames Are Shown

Since you normally do not wish the notes to be part of your presentation, you must explicitly specify the
class option notes to include notes. If this option is not specified, notes are suppressed.
The notes class option takes several parameters whose effects are explained in the following.

\documentclass[notes=hide]{beamer}

Notes are not shown. This is the default in a presentation.

\documentclass [notes=show] {beamer}

Include notes in the output file. Normal slides are also included.

\documentclass[notes=only] {beamer}

Include only the notes in the output file and suppresses all frames. Useful for printing them. If you
specify this command, the .aux and .toc files are not updated. So, if you add a section and reTEX
your presentation, this will not be reflected in the navigation bars (which you do not see anyway since
only notes are output).

71

\documentclass[notes=onlyslideswithnotes]{beamer}

This includes all notes and those slides that contain a \note. Frames that are just “followed” by a
\note command will not be included.

If you use only \note commands, this option will cause the frames and the notes that apply to them to
be nicely paired. This is useful for printing.

7.3.3 Changing the Appearance of Notes

By default, notes are put on a page that contains your text, some information that should make it easier to
match the note to the frame while talking, and a little “mini version” of the slide coming before the note
(this mini version contains only the body of the frame, the head line, foot line, and sidebars are not shown).

You can change this appearance by specifying a different template for note rendering, see Section 8.4.21 for
details. In most cases it will be sufficient to say either \beamertemplatenoteplain in your preamble, which
will give you “plain” notes without anything on them but your text, or \beamertemplatenotecompress,
which will give you notes with more space on them.

7.4 Creating an Article Version

In the following, the “article version” of your presentation refers to a normal TEX text typeset using,
for example, the document class article or perhaps 1llncs or a similar document class. This version of
the presentation will typically follow different typesetting rules and may even have a different structure.
Nevertheless, you may wish to have this version coexist with your presentation in one file and you may wish
to share some part of it (like a figure or a formula) with your presentation.

7.4.1 Starting the Article Mode

The class option class=(class name), where (class name) is the name of another document class like article
or report, causes the beamer class to transfer control almost immediately to the class named (class name).
None of the normal commands defined by the beamer class will be defined, except for one: \mode. All class
options passed to the beamer class will be passed on to the class (class name), except, naturally, for the
option class=(class name) itself.

\documentclass[class=(another class name), (options for another class)]{beamer}

Transfer control to document class (another class name) with the options (options for another class).

FEzxzample:
\documentclass[class=article,adpaper]{beamer}

This will cause the rest of the text to be typeset using the article class with the only class option
being a4paper.

Since BEAMER gives over control to another class almost immediately, none of the usual commands like
\frame and so on are defined in article mode initially. The only command that is guaranteed to be defined
is \mode; which can be used to “comment out” all of BEAMER’s commands. For example, in your preamble
you might write things like

\mode<presentation>{\usepackage{beamerthemeshadow}}
\mode<article>{\usepackage{fullpage}}
\mode<all>{
\usepackage{times}
\newcommand{\myfavoritecommand}{...}

}

However, for the main text this is very bothersome and there is a much better way: You can include the
package beamerbasearticle. This package will define virtually all of BEAMER’s commands in a way that is
sensible for the article mode. Also, overlay specifications can be given to commands like \textbf or \item
once beamerbasearticle has been loaded. Note that, except for \item these overlay specifications also
work: by writing \section<presentation>{Name} you will suppress this section command in the article
version. For the exact effects overlay specifications have in article mode, please see the descriptions of the
commands to which you wish to apply them.

72

\usepackage [(options)] {beamerbasearticle}

Makes most BEAMER commands available for an article.

The following (options) may be given:

activeospeccharacters will leave the character code of the characters used in overlay specifi-
cations as specified by other packages. Normally, BEAMER will turn off the special behaviour of
characters like : or ! in styles like french since they clash with the implementation of overlay
specifications. Using this option, you can reinstall the original behaviour at the price of possible
problems when using overlay specifications in the article mode.

noamsthm will suppress the loading of the amsthm package. No theorems will be defined.

notheorem will suppress the definition of standard environments like theorem, but amsthm is still
loaded and the \newtheorem command still makes the defined environments overlay-specification-
aware. Using this option allows you to define the standard environments in whatever way you like
while retaining the power of the extensions to amsthm.

envcountsect causes theorem, definitions and the like to be numbered with each section. Thus
instead of Theorem 1 you get Theorem 1.1. I recommend using this option.

noxcolor will suppress the loading of the xcolor package. No colors will be defined.

There is one remaining problem: While the article version can easily TEX the whole file, even in the
presence of commands like \frame<2>, we do not want the special article text to be inserted into out original
beamer presentations. That means, we would like all text between frames to be suppressed. More precisely,
we want all text except for commands like \section and so on to be suppressed. This behaviour can be
enforced by specifying the option ignorenonframetext in the presentation version. The option will insert
a \modex* at the beginning of your presentation.

The following example shows a simple usage of the article mode:

\documentclass[class=article,adpaper]{beamer}
\documentclass[ignorenonframetext,red] {beamer}

\mode<article>{\usepackage{fullpagel}}
\mode<presentation>{\usepackage{beamerthemesplit}}

everyone:
\usepackage [english] {babel}
\usepackage{pgf}

\pgfdeclareimage [height=1cm] {myimage}{filename}

\begin{document}

\section{Introduction}

This is the introduction text. This text is not shown in the
presentation, but will be part of the article.

\frameq{

\begin{figure}
% In the article, this is a floating figure,
% In the presentation, this figure is shown in the first frame
\pgfuseimage{myimage}

\end{figure}

}

This text is once more not shown in the presentation.

\section{Main Part}

While this text is not shown in the presentation, the section command
also applies to the presentation.

73

We can add a subsection that is only part of the article like this:
\subsection<article>{Article-Only Section}
With some more text.

\frame{
This text is part both of the article and of the presentation.
\begin{itemize}
\item This stuff is also shown in both version.
\item This too.
\only<article>{\item This particular item is only part
of the article version.}
\item<presentation:only@0> This text is also only part of the article.
\end{itemize}
}
\end{document}

There is one command, whose behaviour is a bit special in the article mode: The line break command
\\. Inside frames, this command has no effect in article mode, except if an overlay specification is present.
Then it has the normal effect dictated by the specification. The reason for this behaviour is that you will
typically inserts lots of \\ commands in a presentation in order to get control over all line breaks. These line
breaks are mostly superfluous in the article mode. If you really want a line break to apply in all versions,
say \\<all>. Note that the command \\ is often redefined by certain environments, so it may not always
be overlay-specification-aware. In such a case you have to write something like \only<presentation>{\\}.

7.4.2 Workflow

The following workflow steps are optional, but they can simplify the creation of the article version.

e In the main file main.tex, delete the first line, which sets the document class.

e Create a file named, say, main.beamer.tex with the following content:

\documentclass[ignorenonframetext] {beamer}
\input{main.tex}

e (Create an extra file named, say, main.article.tex with the following content:

\documentclass[class=article]{beamer}
\usepackage{beamerbasearticle}

\set jobnamebeamerversion{main.beamer}
\input{main.tex}

e You can now run pdflatex or latex on the two files main.beamer.tex and main.article.tex.

The command \set jobnamebeamerversion tells the article version where to find the presentation version.
This is necessary if you wish to include slides from the presentation version in an article as figures.

\setjobnamebeamerversion{(filename without extension)}

Tells the beamer class where to find the presentation version of the current file.

An example of this workflow approach can be found in the examples subdirectory for files starting with
beamerexample?.

7.4.3 Including Slides from the Presentation Version in the Article Version

If you use the package beamerbasearticle, the \frame command becomes available in article mode.
By adjusting the frame template, you can “mimic” the appearance of frames typeset by BEAMER in your
articles. However, sometimes you may wish to insert “the real thing” into the article version, that is, a
precise “screenshot” of a slide from the presentation. The commands introduced in the following help you
do exactly this.

74

In order to include a slide from your presentation in your article version, you must do two things: First,
you must place a normal IXTEX label on the slide using the \1abel command. Since this command is overlay-
specification-aware, you can also select specific slides of a frame. Also, by adding the option label=(name)
to a frame, a label (name)<(slide number)> is automatically added to each slide of the frame.

Once you have labeled a slide, you can use the following command in your article version to insert the
slide into it:

\includeslide [(options)]{(label name)}
This command calls \pgfimage with the given (options) for the file specified by

\setjobnamebeamerversion(filename)

Furthermore, the option page=(page of label name) is passed to \pgfimage, where the (page of label
name) is read internally from the file (filename) . snm.

FExample:

\article
\begin{figure}
\begin{center}
\includeslide [height=5cm]{slidel}
\end{center}
\caption{The first slide (height 5cm). Note the partly covered second item.}
\end{figure}
\begin{figure}
\begin{center}
\includeslide{slide2}
\end{center}
\caption{The second slide (original size). Now the second item is also shown.}
\end{figure}

The exact effect of passing the option page=(page of label name) to the command \pgfimage is explained
in the documentation of pgf. In essence, the following happens:

e For old version of pdflatex and for any version of latex together with dvips, the pgf package will
look for a file named

(filename) . page(page of label name) . (extension)

For each page of your .pdf or .ps file that is to be included in this way, you must create such a file
by hand. For example, if the PostScript file of your presentation version is named main.beamer.ps
and you wish to include the slides with page numbers 2 and 3, you must create (single page) files
main.beamer.page2.ps and main.beamer.page3.ps “by hand” (or using some script). If these files
cannot be found, pgf will complain.

e For new versions of pdflatex, pdflatex also looks for the files according to the above naming scheme.
However, if it fails to find them (because you have not produced them), it uses a special mechanism
to directly extract the desired page from the presentation file main.beamer.pdf.

7.5 Details on Modes

This subsection describes how modes work exactly and how you can use the \mode command to control what
part of your text belongs to which mode.
When BEAMER typesets your text, it is always in one of the following four modes:

e beamer is the default mode.
e handout is the mode for creating handouts.
e trans is the mode for creating transparencies.

e article is the mode when control has been transferred to another class, like article.cls. Note that
the mode is also article if control is transferred to, say, book.cls.

In addition to these modes, BEAMER recognizes the following names for modes sets:

75

e all refers to all modes.

e presentation refers to the first three modes, that is, to all modes except for the article mode.

Depending on the current mode, you may wish to have certain text inserted only in that mode. For
example, you might wish a certain frame or a certain table to be left out of your article version. In some
situations, you can use the \only command for this purpose. However, the command \mode, which is
described in the following, is much more powerful than \only.

The command actually comes in three “flavors,” which only slightly differ in syntax. The first, and
simplest, is the version that takes one argument. It behaves essentially the same way as \only.

\mode<({mode specification)>{(text)}
Causes the (text) to be inserted only for the specified modes. Recall that a (mode specification) is just
an overlay specification in which no slides are mentioned.
Ezxample:

\mode<article>{Extra detail mentioned only in the article version.}

\mode
<beamer| trans>
{\frame{\tableofcontents[current]}}

The second flavor of the \mode command takes no argument. “No argument” means that it is not followed
by an opening brace, but any other symbol.

\mode<(mode specification)>

In the specified mode, this command actually has no effect. The interesting part is the effect in the
non-specified modes: In these modes, the command causes TEX to enter a kind of “gobbling” state. It
will now ignore all following lines until the next line that has a sole occurrence of one of the following
commands: \mode, \mode*, \begin{document}, \end{document}. Even a comment on this line will
make TEX skip it.

When TEX encounters a single \mode command, it will execute this command. If the command is \mode
command of the first flavor, TEX will resume its “gobbling” state after having inserted (or not inserted)
the argument of the \mode command. If the \mode command is of the second flavor, it takes over.

Using this second flavor of \mode is less convenient than the first, but there are two reasons why you
might need to use it:
e The line-wise gobbling is much faster than the gobble of the third flavor, explained below.
e The first flavor reads its argument completely. This means, it cannot contain any verbatim text.
e If the text mainly belongs to one mode with only small amounts of text from another mode inserted,

this second flavor is nice to use.

Note: When searching line-wise for a \mode command to shake it out of its gobbling state, TEX will not
recognize a \mode command if a mode specification follows on the same line. Thus, such a specification
must be given on the next line.

Note: When a TgX file ends, TEX must not be in the gobbling state. Switch this state off using \mode
on one line and <all> on the next.
FEzxzample:

\mode<article>

This text is typeset only in article mode.
\verb!verabtim text is ok {!

\mode
<presentation>
{ % this text is inserted only in presentation mode

\frame{\tableofcontents [current] }}

Here we are back to article mode stuff. This text

76

is not inserted in presentation mode

\mode
<presentation>

This text is only inserted in presentation mode.
The last flavor of the mode command behaves quite differently.

\modex*

The effect of this mode is to ignore all text outside frames in the presentation modes. In article mode
it has no effect.

This mode should only be entered outside of frames. Once entered, if the current mode is a presentation
mode, TEX will enter a gobbling state similar to the gobbling state of the second “flavor” of the \mode
command. The difference is that the text is now read token-wise, not line-wise. The text is gobbled token
by token until one of the following tokens is found: \mode, \frame, \againframe, \part, \section,
\subsection, \appendix, \note, and \end{document} (this is not really a token, but it is recognized
anyway).

Once one of these commands is encountered, the gobbling stops and the command is executed. However,
all of these commands restore the mode that was in effect when they started. Thus, once the command
is finished, TEX returns to its gobbling.

Normally, \modex* is exactly what you want TEX to do outside of frames: ignore everything except for
the above-mentioned commands outside frames in presentation mode. However, there are cases in
which you have to use the second flavor of the \mode command instead: If you have verbatim text
that contains one of the commands, if you have very long text outside frames, or if you wish some text
outside a frame (like a definition) to be executed also in presentation mode.

The class option ignorenonframetext will switch on \mode* at the beginning of the document.

FEzxzample:

\begin{document}
\mode*

This text is not shown in the presentation.

\frame
{

This text is shown both in article and presentation mode.

}

this text is not shown in the presentation again.
\section{This command also has effect in presentation mode}
Back to article stuff again.

\frame<presentation>

{ this frame is shown only in the presentation. }
\end{document}

8 Customization

8.1 Fonts
8.1.1 Serif Fonts and Sans-Serif Fonts

By default, the BEAMER class uses the Computer Modern sans-serif fonts for typesetting a presentation. The
Computer Modern font family is the original font family designed by Donald Knuth himself for the TEX
program. A sans-serif font is a font in which the letters do not have serifs (from French sans, which means
“without”). Serifs are the little hooks at the ending of the strokes that make up a letter. The font you are
currently reading is a serif font. By comparison, this text is in a sans-serif font.

7

The choice Computer Modern sans-serif had the following reasons:

e The Computer Modern family has a very large number of symbols available that go well together.

e Sans-serif fonts are (generally considered to be) easier to read when used in a presentation. In low
resolution rendering, serifs decrease the legibility of a font.

While these reasons are pretty good, you still might wish to change the font:

e The Computer Modern fonts are a bit boring if you have seen them too often. Using another font (but
not Times!) can give a fresh look.

e Other fonts, especially Times, are sometime rendered better since they seem to have better internal
hinting.

e A presentation typeset in a serif font creates a conservative impression, which might be exactly what
you wish to create.

e On projections with a very high resolutions serif text is just as readable as sans serif text.

You must decide whether the text should be typeset in sans-serif or in serif. To choose this, use either
the class option sans or serif. By default, sans is selected, so you do not need to specify this.

\documentclass[sans]{beamer}

Use a sans-serif font during the presentation. (Default.)

\documentclass [serif] {beamer}

Use a serif font during the presentation.

8.1.2 Fonts in Mathematical Text

By default, if a sans-serif font is used for the main text, mathematical formulas are also typeset using sans-
serif letters. In most cases, this is visually the pleasing and easily readable way of typesetting mathematical
formulas. However, in mathematical texts the font used to render, say, a variable is sometimes used to
differentiate between different meanings of this variable. In such case, it may be necessary to typeset
mathematical text using serif letters. Also, if you have a lot of mathematical text, the audience may be
quicker to “parse” it, if it typeset in the way people usually read mathematical text: in a serif font.

You can use the two options mathsans and mathserif to override the overall sans-serif/serif choice for
math text. However, using the option mathsans in a serif environment makes little sense in my opinion.

\documentclass [mathsans]{beamer}

Override the math font to be a sans-serif font.

\documentclass[mathserif]{beamer}

Override the math font to be a serif font.

The command \mathrm will always produce upright (not slanted), serif text and the command \mathsf
will always produce upright, sans-serif text. The command \mathbf will produce upright, bold-face, sans-
serif or serif text, depending on whether mathsans or mathserif is used.

To produce an upright, sans-serif or serif text, depending on whether mathsans or mathserif is used,
you can use for instance the command \operatorname from the amsmath package. Using this command
instead of \mathrm or \mathsf directly will automatically adjust upright mathematical text if you switch
from sans-serif to serif or back.

78

8.1.3 Font Families

Independently of the serif/sans-serif choice, you can switch the document font. To do so, you should use one
of the prepared packages of IWTEX’s font mechanism. For example, to change to Times/Helvetica, simply
add

\usepackage{times}

in your preamble. Note that if you do not specify serif as a class option, Helvetica (not Times) will be
selected as the text font.

There may be many other fonts available on your installation. Typically, at least some of the following
packages should be available: avant, bookman, chancery, charter, euler, helvet, mathtime, mathptm,
newcent, palatino, pifont, times, utopia.

If you use times together with the serif option, you may wish to include also the package mathptm.
If you use the mathtime package (you have to buy some of the fonts), you also need to specify the serif
option.

If you use professional fonts (fonts that you buy and that come with a complete set of every symbol
in all modes), you may need to specify the class option professionalfont. This will tell BEAMER that it
should not meddle with the fonts you use. The reason is that BEAMER normally replaces certain character
glyphs in mathematical text by more appropriate versions. For example, BEAMER will normally replace
glyphs such that the italic characters from the main font are used for variables in mathematical text. If
your professional font package takes care of this already, BEAMER’s meddling should be switched off. Note
that BEAMER’s substitution is automatically turned off if one of the following packages is loaded: mathtime,
mathpmnt, lucidabr, mtpro, and hvmath. If your favorite professional font package is not among these, use
the professionalfont option (and write me an email, so that the package can be added).

\documentclass[professionalfont]{beamer}

Deactivates BEAMER’s internal font replacements for mathematical text. This option should be used if
you use a professional font package that sets up all mathematical fonts correctly.

8.1.4 Font Sizes

The default sizes of the fonts are chosen in a way that makes it difficult to fit “too much” onto a slide. Also,
it will ensure that your slides are readable even under bad conditions like a large room and a small only a
small projection area. However, you may wish to enlarge or shrink the fonts a bit if you know this to be
more appropriate in your presentation environment.

The default font size is 11pt. This may seem surprisingly small, but the actual size of each frame is just
128mm times 96mm and the viewer application enlarges the font. By specifying a default font size smaller
than 11pt you can put more onto each slide, by specifying a larger font size you can fit on less.

To specify the the font size, you can use the following class options:

\documentclass [8pt] {beamer}

This is way too small. Requires that the package extsize is installed.

\documentclass [9pt] {beamer}

This is also too small. Requires that the package extsize is installed.

\documentclass[10pt] {beamer}

If you really need to fit much onto each frame, use this option. Works without extsize.

\documentclass[smaller] {beamer}

Same as the 10pt option.

\documentclass[11pt]{beamer}
The default font size. You need not specify this option.

\documentclass[12pt] {beamer}

Makes all fonts a little bigger, which makes the text more readable. The downside is that less fits onto
each frame.

79

\documentclass [bigger] {beamer}

Same as the 12pt option.

\documentclass[14pt] {beamer}

Makes all fonts somewhat bigger. Requires extsize to be installed.

\documentclass[17pt]{beamer}

This is about the default size of PowerPoint. Requires extsize to be installed.

\documentclass[20pt] {beamer}

This is really huge. Requires extsize to be installed.

8.1.5 Font Encodings

The same font can come in different encodings, which are (very roughly spoken) the ways the characters of
a text are mapped to glyphs (the actual shape of a particular character in a particular font at a particular
size). In TEX two encodings are often used: the T1 encoding and the OT1 encoding (old T1 encoding).

Conceptually, the newer T'1 encoding is preferable over the old OT1 encoding. For example, hyphenation
of words containing umlauts (like the famous German word Friulein) will work only if you use the T1 encod-
ing. Unfortunately, only the bitmapped version of the Computer Modern fonts are available in this encoding
in a standard installation. For this reason, using the T1 encoding will produce PDF files that render very
poorly.

Most standard PostScript fonts are available in T1 encoding. For example, you can use Times in the
T1 encoding. The package lmodern makes the standard Computer Modern fonts available in the T1 encoding.
Furthermore, if you use lmodern several extra fonts become available (like a sans-serif boldface math) and
extra symbols (like proper guillemots).

To select the T1 encoding, use \usepackage [T1]{fontenc}. Thus, if you have the 1modern fonts in-
stalled, you could write

\usepackage{lmodern}
\usepackage [T1] {fontenc}

to get beautiful outline fonts and correct hyphenation.

8.2 Margin Sizes

The “paper size” of a beamer presentation is fixed to 128mm times 96mm. The aspect ratio of this size is
4:3, which is exactly what most beamers offer these days. It is the job of the presentation program (like
acroread) to display the slides at full screen size. The main advantage of using a small “paper size” is that
you can use all your normal fonts at their natural sizes. In particular, inserting a graphic with 11pt labels
will result in reasonably sized labels during the presentation.

You should refrain from changing the “paper size.” However, you can change the size of the left and
right margins, which default to 1cm. To change them, you should use the following two commands:

\beamersetleftmargin{(left margin dimension)}

Sets a new left margin. This excludes the left side bar. Thus, it is the distance between the right edge of
the left side bar and the left edge of the text. This command can only be used in the preamble (before
the document environment is used).

Example: \beamersetleftmargin{lcm}

ARTICLE This command has no effect in article mode.

\beamersetrightmargin{(left margin dimension)}

Like \beamersetleftmargin, only for the right margin.

For more information on side bars, see Section 8.4.10.

80

8.3 Themes

Just like IMTEX in general, the BEAMER class tries to separate the contents of a text from the way it is typeset
(displayed). There are two ways in which you can change how a presentation is typeset: you can specify a
different theme and you can specify different templates. A theme is a predefined collection of templates.

There exist a number of different predefined themes that can be used together with the BEAMER class.
Feel free to add further themes. Themes are used by including an appropriate ITEX style file, using the
standard \usepackage command.

\usepackage{beamerthemebars}

FEzxzample:

Further Reading

For Further Reading

Computation with Absolutely No Space Overhead

¥ A Salomaa.
Lane Hemaspaandral Proshanto Mukherji! Till Tantau? Formal Languages.
Academic Press, 1973
1Department of Computer Science .
University of Rochester B E. Dijkstra.
B i st itk o) (e Smoothsort, an alternative for sorting in situ.
Technical University of Berlin Science of Computer Programming, 1(3):223-233, 1982

E. Feldman and J. Owings, Jr.
A class of universal linear bounded automata.
Information Sciences, 6:187-190, 1973.

Developments in Language Theory Conference, 2003 e

Lane Hemaspaandra, Proshanto Mukherji, Till Tantau Universities of Rochester and Berlin Lane Hemaspaandra, Proshanto Mukherji, Till Tantau Universities of Rochester and Berlin

Computation with Absolutely No Space Overhead Computation with Absolutely No Space Overhead

\usepackage [headheight=(head height),footheight=(foot height)]{beamerthemeboxes}

Ezample:

1. Box 2. Box 3. Box

For Further Reading

Computation with Absolutely No Space Overhead @ A Salomaa.
1 1 y 2 Formal Languages.
Lane Hemaspaandra Proshanto Mukherji Till Tantau Academic Press. 1073

IDepartment of Computer Science B E. Dijkstra.
University of Rochester . L
7 Smoothsort, an alternative for sorting in situ.

*Fakultat fiir Elektrotechnik und Informatik Science of Computer Programming, 1(3):223-233, 1982
FechnicallUniversitylofBerlin

A E. Feldman and J. Owings, Jr.
Developments in Language Theory Conference, 2003 A class of universal linear bounded automata.
Information Sciences, 6:187-190, 1973

1. Box 2. Box 1. Box 2. Box

FEzxzample:
\usepackage [headheight=12pt,footheight=12pt]{beamerthemeboxes}

For this theme, you can specify an arbitrary number of templates for the boxes in the head line and in
the foot line. You can add a template for another box by using the following commands.

\addheadboxtemplate{(background color command)}{{box template)}
Each time this command is invoked, a new box is added to the head line, with the first added box being
shown on the left. All boxes will have the same size.
Example:

\addheadboxtemplate{\color{black}}{\color{white}\tiny\quad 1. Box}
\addheadboxtemplate{\color{structure}}{\color{white}\tiny\quad 2. Box}
\addheadboxtemplate{\color{structure!50}}{\color{white}\tiny\quad 3. Box}

\addfootboxtemplate{(background color command)}{{box template)}

FExample:

\addfootboxtemplate{\color{black}}{\color{white}\tiny\quad 1. Box}
\addfootboxtemplate{\color{structure}}{\color{white}\tiny\quad 2. Box}

81

\usepackage{beamerthemeclassic}

FExample:

Computation with Absolutely No Space Overhead

Lane Hemaspaandral Proshanto Mukherji' Till Tantau?

1Department of Computer Science
University of Rochester

2Fakultat fiir Elektrotechnik und Informatik
Technical University of Berlin

Developments in Language Theory Conference, 2003

\usepackage{beamerthemelined}

Ezxzample:

Computation with Absolutely No Space Overhead

Lane Hemaspaandral Proshanto Mukherji' Till Tantau?

IDepartment of Computer Science
University of Rochester

2Fakultit fiir Elektrotechnik und Informatik
Technical University of Berlin

Developments in Language Theory Conference, 2003

Lane Hemaspaandra, Proshanto Mukherji, Til Tantau:
Computation with Absolutely No Space Overhead

Universities of Rochester and Berlin

\usepackage{beamerthemeplain}

FEzxample:

Computation with Absolutely No Space Overhead

Lane Hemaspaandral Proshanto Mukherji' Till Tantau?

1Department of Computer Science
University of Rochester

2Fakultat fiir Elektrotechnik und Informatik
Technical University of Berlin

Developments in Language Theory Conference, 2003

SUMARY
.
For Further Reading
¥ A. Salomaa
Formal Languages.
Academic Press, 1973
B E. Dijkstra.
Smoothsort, an alternative for sorting in situ.
Science of Computer Programming, 1(3):223-233, 1982
B E. Feldman and J. Owings, Jr.
A class of universal linear bounded automata.
Information Sciences, 6:187-190, 1973
Summary

Further Reading.

For Further Reading

¥ A. Salomaa
Formal Languages.
Academic Press, 1973
B E. Dijkstra.
Smoothsort, an alternative for sorting in situ.
Science of Computer Programming, 1(3):223-233, 1982

B E. Feldman and J. Owings, Jr.
A class of universal linear bounded automata.
Information Sciences, 6:187-190, 1973.

Lane Hemaspaandra, Proshanto Mukherji, Till Tantau:
Computation with Absolutely No Space Overhead

Universities of Rochester and Berlin

For Further Reading

¥ A. Salomaa
Formal Languages.
Academic Press, 1973
B E. Dijkstra.
Smoothsort, an alternative for sorting in situ.
Science of Computer Programming, 1(3):223-233, 1982

B E. Feldman and J. Owings, Jr.
A class of universal linear bounded automata.
Information Sciences, 6:187-190, 1973

\usepackage [width=(sidebar width),dark,tab] {beamerthemesidebar}

The option width sets the width of the sidebar to (sidebar width). The option dark makes the side bar
and the whole theme darked. The option tab causes the current section or subsection to be hilighted
by changing the background behind the entry, rather than hilighting the entry itself.

Example: \usepackage{beamersidebar}

82

Computation with
Absolutely

No Space Overhead

Lane Hemaspaandra,

Proshanto Mukherji,
Till Tantau

Computation with
Absolutely No Space Overhead

Outline

Lane Hemaspaandra! ~ Proshanto Mukherji'
Till Tantau? ;

1Department of Computer Science
University of Rochester

2Fakultit fiir Elektrotechnik und Informatik Furth
Technical University of Berlin

Developments in Language Theory Conference, 2003

For Further Reading

¥ A. Salomaa.
Formal Languages.
Academic Press, 1973

B E. Dijkstra.
Smoothsort, an alternative for sorting in situ.
Science of Computer Programming, 1(3):223-233,
1982

& E. Feldman and J. Owings, Jr.
A class of universal linear bounded automata.
Information Sciences, 6:187-190, 1973

Example: \usepackage [tab] {beamersidebar}

Computation with
Absolutely

No Space Overhead

Lane Hemaspaandra,

Proshanto Mukherji,
Till Tantau

Computation with
Absolutely No Space Overhead Mod

els
Standard Model
Our Model

Power of the Model
Palindrom:

Linear Languages
Forbidden Subword
Complete Languages

Lane Hemaspaandra! Proshanto Mukherjit
Till Tantau?

Limitations of the Model
Strict Inclusion

1Department of Computer Science
University of Rochester

Summary

2Fakultit fiir Elektrotechnik und Informatik
Technical University of Berlin

Developments in Language Theory Conference, 2003

For Further Reading

¥ A. Salomaa.
Formal Languages.
Academic Press, 1973.

B E. Dijkstra
Smoothsort, an alternative for sorting in situ.
Science of Computer Programming, 1(3):223-233,
1982

B E. Feldman and J. Owings, Jr.
A class of universal linear bounded automata.
Information Sciences, 6:187-190, 1973

Example: \usepackage [dark] {beamersidebar}

Computation with
bsolutely
Overhead

ik
Till Tantau

Computation with
Absolutely No Space Overhead
Lane Hemaspaandra! ~ Proshanto Mukherji'

Till Tantau?

1Department of Computer Science
University of Rochester

2Fakultit fiir Elektrotechnik und Informatik
Technical University of Berlin

Developments in Language Theory Conference, 2003

For Further Reading

¥ A. Salomaa
Formal Languages.
Academic Press, 1973

B E. Dijkstra.
Smoothsort, an alternative for sorting in situ.
Science of Computer Programming, 1(3):223-233,
1982

[® E. Feldman and J. Owings, Jr.
A class of universal linear bounded automata.
Information Sciences, 6:187-190, 1973

Ezample: \usepackage [dark, tab] {beamersidebar}

Computation with
lutely

No Space Overhead

Lane H aandra,

Proshanto Mukherji,
Till Tantau

Computation with
Absolutely No Space Overhead

Standard Model
Our Model

Lane Hemaspaandra®! Proshanto Mukherjit
Till Tantau?

dromes

1Department of Computer Science

University of Rochester Strict Inclusion

Summary
Further Reading

2Fakultit fiir Elektrotechnik und Informatik
Technical University of Berlin

Developments in Language Theory Conference, 2003

For Further Reading

¥ A. Salomaa.
Formal Languages.
Academic Press, 1973

B E. Dijkstra.
Smoothsort, an alternative for sorting in situ.
Science of Computer Programming, 1(3):223-233,
1982

B E. Feldman and J. Owings, Jr.
A class of universal linear bounded automata.
Information Sciences, 6:187-190, 1973

83

Computation with
Absolutely

No Space Overhead

Lane Hemaspaandra,

Proshanto Mukherji,
ill Tantau

mitations of the Model
ict Inclusion

Further Reading

Computation with
Absolutely

No Space Overhead

Lane Hemaspaandra,

Proshanto Mukherji,
Till Tantau

Outline.

lodels
Standard Model

Our Model

Power of the Model
Palindromes

Linear Languages
Forbidden Subword
Complete Languages
Limitations of the Model
Strict Inclusion

Summary

Further Reading

Computation with
bsolutely
No Sp:
Lane H a
Proshanto Mukherji
Till Tantau

Further Reading

Computation with
Absolutely

No Space Overhead

Lane Hemaspaandra,

Proshanto Mukherji
Till Tantau

Standard Model
Our Model

Palindromes
Linear Languages
Forbidden Subword
Complete Languages

Strict Inclusion

Summary

\usepackage{beamerthemeshadow}

FExample:

Summary
urther Reading
Summary

For Further Reading

Computati ith Absolutely No Space Overhead ¥ A. Salomaa

Formal Languages.

Lane Hemaspaandra® Proshanto Mukherji' Till Tantau? Academic Press, 1973
IDepartment of Computer Science B E. Dijkstra.
Utthvasisy o Rediesiia Smoothsort, an alternative for sorting in situ.
2Fakultit fiir Elektrotechnik und Informatik Science of Computer Programming, 1(3):223-233, 1982
Technical University of Berlin .
B E. Feldman and J. Owings, Jr.
Developments in Language Theory Conference, 2003 A class of universal linear bounded automata.

Information Sciences, 6:187-190, 1973

Computation with Absolutely No Space Overhead a et a Computation with Absolutely No Space Overhead

\usepackage{beamerthemesplit}

Ezxzample:

Summary
Further Reading.
Summary

For Further Reading

Computation with Absolutely No Space Overhead @ A Salomaa

Formal Languages.
Academic Press, 1973

IDepartment of Computer Science E. Dij
. Dijkstra.
University of Rochester B U

Lane Hemaspaandral Proshanto Mukherji' Till Tantau?

Smoothsort, an alternative for sorting in situ.
Science of Computer Programming, 1(3):223-233, 1982

A E. Feldman and J. Owings, Jr.
A class of universal linear bounded automata.
Information Sciences, 6:187-190, 1973

2Fakultit fiir Elektrotechnik und Informatik
Technical University of Berlin

Developments in Language Theory Conference, 2003

Lane Hemaspaandra, Proshanto Mukherji, Till Tantau | Computation with Absolutely No Space Overhead Lane Hemaspaandra, Proshanto Mukherji, Till Tantau | Computation with Absolutely No Space Overhead

\usepackage{beamerthemetree}

FEzxample:

Computation with Absolutely No Space Overhead Computation with Absolutely No Space Overhead

Summary

LFurther Reading

For Further Reading

Computation with Absolutely No Space Overhead @ A Salomaa

Formal Languages.
Academic Press, 1973

1Department of Computer Science @ E. Dijkstra.
University of Rochester

Lane Hemaspaandral Proshanto Mukherji' Till Tantau?

Smoothsort, an alternative for sorting in situ.
Science of Computer Programming, 1(3):223-233, 1982

B E. Feldman and J. Owings, Jr.
A class of universal linear bounded automata.
Information Sciences, 6:187-190, 1973

2Fakultat fiir Elektrotechnik und Informatik
Technical University of Berlin

Developments in Language Theory Conference, 2003

84

\usepackage [bar] {beamerthemetree}

FExample:

Computation with Absolutely No Space Overhead ‘omputation with Absolutely No Space Overhead

nary
Further Reading

For Further Reading

Computation with Absolutely No Space Overhead @ A Salomaa
1 il § 2 Formal Languages.
Lane Hemaspaandra Proshanto Mukherji Till Tantau Aedtte Press, 1677
!Department of Computer Science B E. Dijkstra.
University of Rochester . L
Smoothsort, an alternative for sorting in situ.
?Fakultat fiir Elektrotechnik und Informatik Science of Computer Programming, 1(3):223-233, 1982
Technical University of Berlin . :
A E. Feldman and J. Owings, Jr.
Developments in Language Theory Conference, 2003 A class of universal linear bounded automata.

Information Sciences, 6:187-190, 1973

8.4 Templates
8.4.1 Introduction to Templates

If you only wish to modify a small part of how your presentation is rendered, you do not need to create a
whole new theme. Instead, you can modify an appropriate template.

A template specifies how a part of a presentation is typeset. For example, the frame title template
dictates where the frame title is put, which font is used, and so on.

As the name suggests, you specify a template by writing the exact HTEX code you would also use
when typesetting a single frame title by hand. Only, instead of the actual title, you use the command
\insertframetitle.

For example, suppose we would like to have the frame title typeset in red, centered, and boldface. If we
were to typeset a single frame title by hand, it might be done like this:

\frame
{
\begin{centering}
\color{red}
\textbf{The Title of This Frame.}
\par
\end{centering}

Blah, blah.
}

In order to typeset the frame title in this way on all slides, we can change the frame title template as
follows:

\useframetitletemplateq{
\begin{centering}
\color{red}
\textbf{\insertframetitle}
\par
\end{centering}

}
We can then use the following code to get the desired effect:

\frame

{
\frametitle{The Title of This Frame.}

Blah, blah.
}

When rendering the frame, the BEAMER class will use the code of the frame title template to typeset the
frame title and it will replace every occurrence of \insertframetitle by the current frame title.

85

ARTICLE

In the following subsections all commands for changing templates are listed, like the above-mentioned
command \useframetitletemplate. Inside these commands, you should use the \insertxxxx commands,
which are listed following the template changing commands. Although the \insertxxxx commands are
listed alongside the templates for which they make the most sense, you can (usually) also use them in all
other templates.

In article mode, most of the template mechanism is switched off and has no effect. However, a few
templates are also available. If this is the case, it is specially indicated.

Some of the below subsections start with commands for using predefined templates. Calling one of them
will change a template in a predefined way, making it unnecessary to worry about how exactly one creates,
say, these cute little balls in different sizes. Using them, you can use, for example, your favorite theme
together with a shading background and a numbered table of contents.

Here are a few hints that might be helpful when you wish to redefine a template:

e Usually, you might wish to copy code from an existing template. The code often takes care of some
things that you may not yet have thought about. The file beamerbasetemplates might be useful
starting point.

e When copying code from another template and when inserting this code in the preamble of your
document (not in another style file), you may have to “switch on” the at-character (@). To do so, add
the command \makeatletter before the \usexxxtemplate command and the command \makeatother
afterward.

e Most templates having to do with the frame components (head lines, side bars, etc.) can only be
changed in the preamble. Other templates can be changed during the document.

e The height of the head line and foot line templates is calculated automatically. This is done by
typesetting the templates and then “having a look” at their heights. This recalculation is done right at
the beginning of the document, after all packages have been loaded and even after these have executed
their \AtBeginDocument initialization.

e The left and right margins of the head and foot line templates are the same as of the normal text. In
order to start the head line and foot line at the page margin, you must insert a negative horizontal
skip using \hskip-\Gm@lmargin. You may wish to add a \hskip-\Gm@rmargin at the end to avoid
having TEX complain about overfull boxes.

o Getting the boxes right inside any template is often a bit of a hassle. You may wish to consult the
TEX book for the glorious details on “Making Boxes.” If your headline is simple, you might also try
putting everything into a pgfpicture environment, which makes the placement easier.

8.4.2 Title Page

Predefined Templates

\beamertemplatelargetitlepage
Causes the title page to be typeset with a large font for the title.

\beamertemplateboldtitlepage
Causes the title page to be typeset with a bold font for the title.

Template Installation Commands

\usetitlepagetemplate{(title page template)}

Ezxample:

\usetitlepagetemplate{
\vbox{}
\vfill
\begin{centering}
\Large\structure{\inserttitle}
\vskiplem\par
\normalsize\insertauthor\vskiplem\par

86

{\scriptsize\insertinstitute\par}\par\vskiplem
\insertdate\par\vskipl.5em
\inserttitlegraphic
\end{centering}
\vfill
}

If you wish to suppress the head and foot line in the title page, use \frame [plain] {\titlepage}.

Inserts for this Template

\insertauthor

Inserts the author names into a template.

\insertdate

Inserts the date into a template.

\insertinstitute

Inserts the institute into a template.

\inserttitle

Inserts a version of the document title into a template that is useful for the title page.

\inserttitlegraphic

Inserts the title graphic into a template.

8.4.3 Part Page

Predefined Templates

\beamertemplatelargepartpage
Causes the part pages to be typeset with a large font for the part name.

\beamertemplateboldpartpage
Causes the part pages to be typeset with a bold font for the part name.

Template Installation Commands

\usepartpagetemplate{(part page template)}

Ezxample:

\usepartpagetemplate{

\begin{centering}
\Large\structure{\partname~\insertromanpartnumber}
\vskiplem\par
\insertpart\par

\end{centering}

}

Inserts for this Template

\insertpart

Inserts the current part name.

\insertpartnumber

Inserts the current part number as an Arabic number into a template.

\insertpartromannumber

Inserts the current part number as a Roman number into a template.

87

8.4.4 Frames
Template Installation Commands
\useframetemplate{(begin of frame)}{({end of frame)}
BEAMER This command is currently not available in the presentation modes.

ARTICLE The (begin of frame) text is inserted at the beginning of each frame, when it is inserted into the article.
The text (end of frame) is inserted at the end. You can use this template to put, say, lines around a
frame or to put the whole frame into a minipage. By default, nothing is inserted.

FEzxzample:
\useframetemplate{\par\medskip\hrule\smallskip}{\par\smallskip\hrule\medskip}

8.4.5 Background
Predefined Templates
\beamertemplatesolidbackgroundcolor{{color)}
Installs the given color as the background color for every frame.
Example: \beamertemplatesolidbackgroundcolor{white!90!red}

\beamertemplateshadingbackground{(color expression page bottom)}{(color expression page top>}

Installs a vertically shaded background such that the specified bottom color changes smoothly to the
specified top color. Use with care: Background shadings are often distracting! However, a very light
shading with warm colors can make a presentation more lively.

FExample:

\beamertemplateshadingbackground{red!10}{blue!10}
Bottom is light red, top is light blue

\beamertemplategridbackground [{spacing)]
Installs a light grid as background with lines spaced apart by (spacing). Default is half a centimeter.

Example: \beamertemplategridbackground[0.2cm]

Template Installation Commands

\usebackgroundtemplate{(background template)}

Installs a new background template. Call \beamersetaveragebackground after you have called this
macro, see Section 6.2.2 for details.

FExample:
\usebackgroundtemplate{’,

\color{red}/,
\vrule height\paperheight width\paperwidthy
}
8.4.6 Table of Contents
Predefined Templates
\beamertemplateplaintoc
Installs a simple table of contents template with indented subsections.
FEzample: \beamertemplateplaintoc
\beamertemplateballtoc
Installs a table of contents template in which small balls are shown before each section and subsection.

Ezample: \beamertemplateballtoc

88

\beamertemplatenumberedsectiontoc

Installs a table of contents template in which the sections are numbered.

Example: \beamertemplatenumberedsectiontoc

\beamertemplatenumberedcirclesectiontoc

Installs a table of contents template in which the sections are numbered and the numbers are drawn on
a small circle.

Example: \beamertemplatenumberedcirclesectiontoc

\beamertemplatenumberedballsectiontoc

Installs a table of contents template in which the sections are numbered and the numbers are drawn on
a small ball.

Ezxample: \beamertemplatenumberedballsectiontoc

\beamertemplatenumberedsubsectiontoc

Installs a table of contents template in which the subsections are numbered.

FExample: \beamertemplatenumberedsubsectiontoc

Template Installation Commands

\usetemplatetocsection [(miz-in specification)]{(template)}{(grayed template)}

Installs a (template) for rendering sections in the table of contents. If the (mix-in specification) is present,
the (grayed template) may not be present and the grayed sections names are obtained by mixing in the
(miz-in specification). If (miz-in specification) is not present, (grayed template) must be present and is
used to render grayed section names.

Ezxample:

\usetemplatetocsection
{\color{structure}\inserttocsection}
{\color{structure!50}\inserttocsection}

\usetemplatetocsection[50!averagebackgroundcolor]
{\color{structure}\inserttocsection}

\usetemplatetocsubsection[(miz-in specification)]{{template)}{{grayed template)}
See \usetemplatetocsection.

FEzxample:

\usetemplatetocsubsection
{\leavevmode\leftskip=1.5em\color{black}\inserttocsubsection\par}
{\leavevmode\leftskip=1.5em\color{black!50!white}\inserttocsubsection\par}

\usetemplatetocsection[50!averagebackgroundcolor]
{\leavevmode\leftskip=1.5em\color{black}\inserttocsubsection\par}

Inserts for this Template

\inserttocsection

Inserts the table of contents version of the current section name into a template.

\inserttocsectionnumber

Inserts the number of the current section (in the table of contents) into a template.

\inserttocsubsection

Inserts the table of contents version of the current subsection name into a template.

\inserttocsubsectionnumber

Inserts the number of the current subsection (in the table of contents) into a template.

89

8.4.7 Bibliography

Predefined Templates

\beamertemplatetextbibitems

Shows the citation text in front of references in a bibliography instead of a small symbol.

\beamertemplatearrowbibitems

Changes the symbol before references in a bibliography to a small arrow.

\beamertemplatebookbibitems

Changes the symbol before references in a bibliography to a small book icon.
\beamertemplatearticlebibitems

Changes the symbol before references in a bibliography to a small article icon. (Default)
Template Installation Commands

\usebibitemtemplate{(citation template)}
Installs a template for the citation text before the entry. (The “label” of the item.)

FEzample: \usebibitemtemplate{\color{structure}\insertbiblabel}

\usebibliographyblocktemplate{(template 1)}{(template 2)}{(template 3)}{(template 4)}

The text (template 1) is inserted before the first block of the entry (the first block is all text before
the first occurrence of a \newblock command). The text (template 2) is inserted before the second
block (the text between the first and second occurrence of \newblock). Likewise for (template 3) and

(template 4).

The templates are inserted before the blocks and you do not have access to the blocks themselves via
insert commands. In the following example, the first \par commands ensure that the author, the title,
and the journal are put on different lines. The color commands cause the author (first block) to be
typeset using the theme color, the second block (title of the paper) to be typeset in black, and all other

lines to be typeset in a washed-out version of the theme color.

Ezxample:

\usebibliographyblocktemplate
{\color{structurel}}
{\par\color{black}}
{\par\color{structure!75}}
{\par\color{structure!75}}

Inserts for these Templates

\insertbiblabel

Inserts the current citation label into a template.
8.4.8 Frame Titles
Predefined Templates

\beamertemplateboldcenterframetitle

Typesets the frame title using a bold face and centers it.

\beamertemplatelargeframetitle

Typesets the frame title using a large face and flushes it left.

90

Template Installation Commands

\useframetitletemplate{(frame title template)}

FEzxzample:

\useframetitletemplate{’,

\begin{centering}
\structure{\textbf{\insertframetitle}}
\par

\end{centering}

}

ARTICLE This command is also available in article mode. By default, a new paragraph is created. You may
wish to install a template that will simply suppress the frame title.

Inserts for this Template

\insertframetitle

Inserts the current frame title into a template.

8.4.9 Head Lines and Foot Lines

Predefined Templates

\beamertemplateheadempty
Makes the head line empty.

\beamertemplatefootempty
Makes the foot line empty.

\beamertemplatefootpagenumber

Shows only the page number in the foot line.

Template Installation Commands

\usefoottemplate{(foot line template)}

The final height of the foot line is calculated by invoking this template just before the beginning of the
document and by setting the foot line height to the height of the template.

FEzxzample:
\usefoottemplate{\hfil\tiny{\color{black!50}\insertpagenumber}}
or

\usefoottemplate{’
\vbox{%
\tinycolouredline{structure!75}},
{\color{white}\textbf{\insertshortauthor\hfill\insertshortinstitute}}/,
\tinycolouredline{structurel}y,
{\color{white}\textbf{\insertshorttitle}\hfill}},
i3

\useheadtemplate{(head line template)}
See \usefoottemplate.

Ezxample:

\useheadtemplate{’
\vbox{/,
\vskip3pt¥
\beamerline{\insertnavigation{\paperwidth}}%
\vskipl.5pt
\insertvrule{0.4pt}{structure!50}}%

91

Inserts for these Templates

\insertframenumber

Inserts the number of the current frame (not slide) into a template.

\inserttotalframenumber
Inserts the total number of the frames (not slides) into a template. The number is only correct on the
second run of TEX on your document.

\insertlogo

Inserts the logo(s) into a template.

\insertnavigation{(width)}
Inserts a horizontal navigation bar of the given (width) into a template. The bar lists the sections and
below them mini frames for each frame in that section.

\insertpagenumber

Inserts the current page number into a template.

\insertsection

Inserts the current section into a template.

\insertsectionnavigation{(width)}

Inserts a vertical navigation bar containing all sections, with the current section hilighted.

\insertsectionnavigationhorizontal{(width)}{(left insert)}{{right insert)}

Inserts a horizontal navigation bar containing all sections, with the current section hilighted. The (left
insert) will be inserted to the left of the sections, the {(right insert)} to the right. By inserting a triple
fill (a £i111) you can flush to bar to the left or right.

FExample:
\insertsectionnavigationhorizontal{.5\textwidth}{\hskipOpt plus1filll}{}

\insertshortauthor [{options)]
Inserts the short version of the author into a template. The text will be printed in one long line, line
breaks introduced using the \\ command are suppressed. The following (options) may be given:
e width=(width) causes the text to be put into a multi-line minipage of the given size. Line breaks
are still suppressed by default.

e center centers the text inside the minipage created using the width option, rather than having it
left aligned.

e respectlinebreaks causes line breaks introduced by the \\ command to be honored.

Example: \insertauthor [width={3cm},center,respectlinebreaks]

\insertshortdate [(options)]
Inserts the short version of the date into a template. The same options as for \insertshortauthor
may be given.

\insertshortinstitute [{options)]
Inserts the short version of the institute into a template. The same options as for \insertshortauthor
may be given.

\insertshortpart [{options)]

Inserts the short version of the part name into a template. The same options as for \insertshortauthor
may be given.

92

\insertshorttitle[{options)]

Inserts the short version of the document title into a template. Same options as for \insertshortauthor
may be given.

\insertsubsection

Inserts the current subsection into a template.

\insertsubsectionnavigation{{width)}

Inserts a vertical navigation bar containing all subsections of the current section, with the current
subsection hilighted.

\insertsubsectionnavigationhorizontal{(width)}{(left insert)}{({right insert)}

See \insertsectionnavigationhorizontal.

\insertverticalnavigation{(width)}

Inserts a vertical navigation bar of the given (width) into a template. The bar shows a little ta-
ble of contents. The individual lines are typeset using the templates \usesectionsidetemplate and
\usesubsectionsidetemplate.

\insertvrule{{color expression)}{(thickness)}

Inserts a rule of the given color and (thickness) into a template.

8.4.10 Side Bars

Side bars are vertical areas that stretch from the lower end of the head line to the top of the foot line. There
can be a side bar at the left and one at the right (or even both). Side bars can show a table of contents, but
they could also be added for purely aesthetic reasons.

When you install a side bar template, you must explicitly specify the horizontal size of the side bar. The
vertical size is determined automatically. Each side bar can have its own background, which can be setup
using special side background templates.

Adding a sidebar of a certain size, say 1lcm, will make the main text 1lem narrower. The distance between
the inner side of a side bar and the outer side of the text, as specified by the command \beamersetleftmargin
and its counterpart for the right margin, is not changed when a side bar is installed.

Internally, the sidebars are typeset by showing them as part of the headline. The BEAMER class keeps
track of six dimensions, three for each side: the variables \beamer@leftsidebar and \beamer@rightsidebar
store the (horizontal) sizes of the side bars, the variables \beamer@leftmargin and \beamer@rightmargin
store the distance between sidebar and text, and the macros \Gm@lmargin and \Gm@rmargin store the
distance from the edge of the paper to the edge of the text. Thus the sum \beamer@leftsidebar and
\beamer@leftmargin is exactly \Gm@lmargin. Thus, if you wish to put some text right next to the left side
bar, you might write \hskip-\beamer@leftmargin to get there.

In the following, only the commands for the left side bars are listed. Each of these commands also exists
for the right side bar, with “left” replaced by “right” everywhere.

\useleftsidebartemplate{(horizontal size)}{(template)}
When the side bar is typeset, the (template) is invoked inside a \vbox of the height of the side bar.
Thus, the below example will produce a side bar of half a centimeter width, in which the word “top” is
printed just below the head line and “bottom” is printed just above the foot line.
Exzample:

\useleftsidebartemplate{icm}{
top
\vfill
bottom
}
\useleftsidebarbackgroundtemplate{(template)}

The template is shown behind whatever is shown in the left side bar.

FExample:

\useleftsidebarbackgroundtemplate
{\color{red}\vrule height\paperheight width\beamer@leftsidebar}

93

\useleftsidebarcolortemplate{(color expression)}

Uses the given color as background for the side bar.

Ezxample:

\useleftsidebarcolortemplate{\color{red}}
\useleftsidebarcolortemplate{\color[rgb]l{1,0,0.5}}

\useleftsidebarverticalshadingtemplate{(bottom color expression)}{{top color expression)}

Installs a smooth vertical transition between the given colors as background for the side bar.

Ezxample:
\useleftsidebarverticalshadingtemplate{white}{red}

\useleftsidebarhorizontalshadingtemplate{(left end color expression)}{({right end color expression)}

Installs a smooth horizontal transition between the given colors as background for the side bar.

FEzxzample:
\useleftsidebarhorizontalshadingtemplate{white}{red}

\usesectionsidetemplate{(current section template)}{{other section template)}

Both parameters should be \hboxes. The templates are used to typeset a section name inside a side
navigation bar.

FEzxzample:

\usesectionsidetemplate
{\setbox\tempbox=\hbox{\color{black}\tiny{\kern3pt\insertsectionhead}}%

\ht\tempbox=8pt¥%

\dp\tempbox=2pt¥

\wd\tempbox=\beamer@sidebarwidthy,

\box\tempbox}
{\setbox\tempbox=\hbox{\color{structure!75}\tiny{\kern3pt\insertsectionheadl}}/,

\ht\tempbox=8pt%

\dp\tempbox=2pt%

\wd\tempbox=\beamer@sidebarwidth,

\box\tempbox}

\usesubsectionsidetemplate{(current subsection template)}{{other subsection template)}

See \usesectionsidetemplate.

FEzxzample:

\usesectionsidetemplate
{\setbox\tempbox=\hbox{\color{black}\tiny{\kern3pt\insertsectionhead}}%

\ht\tempbox=8pt

\dp\tempbox=2pt

\wd\tempbox=\beamer@sidebarwidthy,

\box\tempbox}
{\setbox\tempbox=\hbox{\color{structure!75}\tiny{\kern3pt\insertsectionheadl}}/,

\ht\tempbox=8pt%

\dp\tempbox=2pt%

\wd\tempbox=\beamer@sidebarwidth,

\box\tempbox}

8.4.11 Buttons

Predefined Templates

\beamertemplateoutlinebuttons

Renders buttons as rectangles with rounded left and right border. Only the border (outline) is painted.

\beamertemplatesolidbuttons

Renders buttons as filled rectangles with rounded left and right border.

94

Template Installation Commands
\usebuttontemplate{{button template)}
Installs a new button template. This template is invoked whenever a button should be rendered.

FExample:

\usebuttontemplate{\color{structure}\insertbuttontext}

Inserts
Inside the button template, the button text can be accessed via the following command:

\insertbuttontext

Inserts the text of the current button into a template. When called by button creation commands, like
\beamerskipbutton, the symbol will be part of this text.

The button creation commands automatically add the following three inserts to the text to be rendered
by \insertbuttontext:

\insertgotosymbol

Inserts a small right-pointing arrow.

\insertskipsymbol

Inserts a double right-pointing arrow.

\insertreturnsymbol

Inserts a small left-pointing arrow.

You can redefine these commands to change these symbols.

8.4.12 Navigation Bars
Predefined Templates

\beamertemplatecircleminiframe

Changes the symbols in a navigation bar used to represent a frame to a small circle.

\beamertemplatecircleminiframeinverted
Changes the symbols in a navigation bar used to represent a frame to a small circle, but with the colors
inverted. Use this if the navigation bar is shown on a dark background.
\beamertemplatesphereminiframe

Changes the symbols in a navigation bar used to represent a frame to a small spheres.

\beamertemplatesphereminiframeinverted
Changes the symbols in a navigation bar used to represent a frame to a small spheres, but with the
colors inverted. Use this if the navigation bar is shown on a structure background.
\beamertemplateboxminiframe

Changes the symbols in a navigation bar used to represent a frame to a small box.

\beamertemplateticksminiframe

Changes the symbols in a navigation bar used to represent a frame to a small vertical bar of varying
length.

95

Template Installation Commands

\usesectionheadtemplate{(current section template)}{{other section template)}

The templates are used to render the section names in a navigation bar.

FExample:

\usesectionheadtemplate
{\color{structure}\tiny\insertsectionhead?}
{\color{structure!50}\tiny\insertsectionhead}

\usesubsectionheadtemplate{(current subsection template)}{{other subsection template)}

See \usesectionheadtemplate.

Ezxample:

\usesubsectionheadtemplate
{\color{structure}\tiny\insertsubsectionhead}
{\color{structure!50}\tiny\insertsubsectionhead}

\useminislidetemplate{(template current frame icon)}{(template current subsection frame icon)}
{(template other frame icon)}{(horizontal offset)}{(vertical offset)}

The templates are used to draw frame icons in navigation bars. The offsets describe the offset between
icons.

FExample:

\useminislidetemplate
{
\color{structurel}’,
\hskip-0.4pt\vrule height\boxsize widthl.2pt}
}
VA
\color{structurel}
\vrule height\boxsize widthO.4pt%
}
Tk
\color{structure!50}%
\vrule height\boxsize widthO.4pt%
}
{.1cm}
{.05cm}

8.4.13 Navigation Symbols
Predefined Templates

\beamertemplatenavigationsymbolsempty

Suppresses all navigation symbols.

\beamertemplatenavigationsymbolsframe

Shows only the frame symbol as navigation symbol.

\beamertemplatenavigationsymbolsvertical

Organizes the navigation symbols vertically.

\beamertemplatenavigationsymbolshorizontal

Organizes the navigation symbols horizontally.

96

Template Installation Commands

\usenavigationsymbolstemplate{(symbols template)}

Installs a new symbols template. This template is invoked by themes at the place where the navigation
symbols should be shown.

Ezxzample:

\usenavigationsymbolstemplate{\vbox{/
\hbox{\insertslidenavigationsymbols}
\hbox{\insertframenavigationsymbols}
\hbox{\insertsubsectionnavigationsymbols}
\hbox{\insertsectionnavigationsymbols}
\hbox{\insertdocnavigationsymbols}
\hbox{\insertbackfindforwardnavigationsymbols}}}

Inserts for this Template
The following inserts are useful for the navigation symbols template:

\insertslidenavigationsymbols

Inserts the slide navigation symbol, see Section 5.3.2.

\insertframenavigationsymbols

Inserts the frame navigation symbol, see Section 5.3.2.

\insertsubsectionnavigationsymbols

Inserts the subsection navigation symbol, see Section 5.3.2.

\insertsectionnavigationsymbols

Inserts the section navigation symbol, see Section 5.3.2.

\insertdocnavigationsymbols

Inserts the presentation navigation symbol and (if necessary) the appendix navigation symbol, see
Section 5.3.2.

\insertbackfindforwardnavigationsymbols

Inserts a back, a find, and a forward navigation symbol, see Section 5.3.2.

8.4.14 Footnotes

Template Installation Commands

\usefootnotetemplate{(footnote template)}

FEzxzample:

\usefootnotetemplated{
\parindent lem
\noindent
\hbox to 1.8em{\hfillinsertfootnotemark}\insertfootnotetext}

Inserts for these Templates

\insertfootnotemark

Inserts the current footnote mark (like a raised number) into a template.

\insertfootnotetext

Inserts the current footnote text into a template.

97

8.4.15 Captions
Predefined Templates

\beamertemplatecaptionwithnumber

Changes the caption template such that the number of the table or figure is also shown.

\beamertemplatecaptionownline

Changes the caption template such that the word “Table” or “Figure” has its own line.

Template Installation Commands

\usecaptiontemplate{(caption template)}

FEzxzample:

\usecaptiontemplate{
\small
\structure{\insertcaptionname™\insertcaptionnumber:}
\insertcaption

}

Inserts for these Templates

\insertcaption

Inserts the text of the current caption into a template.

\insertcaptionname

Inserts the name of the current caption into a template. This word is either “Table” or “Figure” or, if
the babel package is used, some translation thereof.

\insertcaptionnumber

Inserts the number of the current figure or table into a template.

8.4.16 Lists (Itemizations, Enumerations, Descriptions)

Predefined Templates

\beamertemplateballitem

Changes the symbols shown in an itemize and an enumerate environment to small plastic balls.

\beamertemplatedotitem

Changes the symbols shown in an itemize environment to dots.

\beamertemplatetriangleitem

Changes the symbols shown in an itemize environment to triangles.

\beamertemplateenumeratealpha

Changes the labels of first-level enumerations to “1.”, “2.”, “3.” and so on, and to “1.17, “1.2”7, “1.3”,
and so on for the second level.

Template Installation Commands

\useenumerateitemtemplate{(template)}

The (template) is used to render the default item in the top level of an enumeration.

Example: \useenumerateitemtemplate{\insertenumlabel}

98

\useitemizeitemtemplate{(template)}

The (template) is used to render the default item in the top level of an itemize list.

Example: \useitemizeitemtemplate{\pgfuseimage{mybulletl}}
\usesubitemizeitemtemplate{(template)}

The (template) is used to render the default item in the second level of an itemize list.

Example: \usesubitemizeitemtemplate{\pgfuseimage{mysubbullet}}
\usesubsubitemizeitemtemplate{(template)}

The (template) is used to render the default item in the third level of an itemize list.

Example: \usesubsubitemizeitemtemplate{\pgfuseimage{mysubsubbulletl}}
\useitemizetemplate{(begin text)}{(end text)}

The (begin text) is inserted at the beginning of a top-level itemize list, the (end text) at its end.

Ezample: \useitemizetemplate{}{}
\usesubitemizetemplate{(begin text)}{(end text)}

The (begin text) is inserted at the beginning of a second-level itemize list, the (end text) at its end.

Example: \usesubitemizetemplate{\begin{small}}{\end{small}}
\usesubsubitemizetemplate{(begin text)}{(end text)}

The (begin text) is inserted at the beginning of a third-level itemize list, the (end text) at its end.

Ezample: \usesubitemizetemplate{\begin{footnotesize}}{\end{footnotesizel}}
\useenumerateitemtemplate{(template)}

The (template) is used to render the default item in the top-level of an enumeration.

Example: \useenumerateitemtemplate{\insertenumlabel}

\useenumerateitemminitemplate{(template)}

The (template) is used to render the items in an enumeration where the optional argument (mini
template) is used (see Section 5.4.1).

Example: \useenumerateitemminitemplate{\color{structure}\insertenumlabel}
\usesubenumerateitemtemplate{(template)’}

The (template) is used to render the default item in the second level of an enumeration.

Example: \usesubenumerateitemtemplate{\insertenumlabel-\insertsubenumlabel}
\usesubsubenumerateitemtemplate{(template)}

The (template) is used to render the default item in the third level of an enumeration.

Ezxample:

\usesubsubenumerateitemtemplate
{\insertenumlabel-\insertsubenumlabel-\insertsubsubenumlabel}

\useenumeratetemplate{(begin text)}{(end text)}
The (begin text) is inserted at the beginning of a top-level enumeration, the (end text) at its end.
Example: \useenumeratetemplate{}{}

\usesubenumeratetemplate{(begin text)}{(end text)}
The (begin text) is inserted at the beginning of a second-level enumeration, the (end text) at its end.

Ezample: \usesubenumeratetemplate{\begin{small}}{\end{smalll}}

99

\usesubsubenumeratetemplate{(begin text)}{(end text)}

The (begin text) is inserted at the beginning of a third-level enumeration, the (end text) at its end.
Example: \usesubsubenumeratetemplate{\begin{footnotesize}}{\end{footnotesize}}

\usedescriptiontemplate{(description template)}{{default width)}

The (default width) is used as width of the default item, if no other width is specified; the width
\labelsep is automatically added to this parameter.

FEzample: \usedescriptionitemtemplate{\color{structure}\insertdescriptionitem}{2cm}

Inserts for these Templates

\insertdescriptionitem

Inserts the current item of a description environment into a template.

\insertenumlabel

Normally, this command inserts the current number of the top-level enumeration (as an Arabic number)
into a template. However, in an enumeration where the optional (mini template) option is used, this
command inserts the current number rendered by this mini template. For example, if the (mini template)
is (1) and this command is used in the fourth item, \insertenumlabel would yield (iv).

\insertsubenumlabel

Inserts the current number of the second-level enumeration (as an Arabic number) into a template.

\insertsubsubenumlabel

Inserts the current number of the third-level enumeration (as an Arabic number) into a template.

8.4.17 Hilighting Commands
Template Installation Commands

\usealerttemplate{(alert template begin)}{{alert template end)?

In an \alert command and in an alertenv environment, the text (alert template begin) is inserted at
the beginning, the text (alert template end) at the end.

FEzample: \usealerttemplate{\color{red}}{}

ARTICLE This command is also available in article mode.

\usestructuretemplate{(structure template begin)}{(structure template end)}

Same as for alerts.
FEzample: \usestructuretemplate{\color{blue}}{}

ARTICLE This command is also available in article mode.

8.4.18 Block Environments
Predefined Templates

\beamertemplateboldblocks
Block titles are printed in bold.

\beamertemplatelargeblocks
Block titles are printed slightly larger.

\beamertemplateroundedblocks

Changes the block templates such that they are printed on a rectangular area with rounded corners.

\beamertemplateshadowblocks

Changes the block templates such that they are printed on a rectangular area with rounded corners and
a shadow.

100

Template Installation Commands
\useblocktemplate{(block beginning template)}{(block end template)}

FEzxample:

\useblocktemplate
¥
\medskip¥
{\color{blockstructure}\textbf{\insertblocknamel}}
\par’
}
{\medskip}

ARTICLE This command is also available in article mode.
\usealertblocktemplate{(block beginning template)}{{block end template)}

FExample:

\usealertblocktemplate
{h
\medskip
{\alert{\textbf{\insertblocknamel}}}Y%
\par}
{\medskip}

ARTICLE This command is also available in article mode.
\useexampleblocktemplate{(block beginning template)}{(block end template)}

FEzxzample:

\useexampleblocktemplate
¥
\medskip
\begingroup\color{darkgreen}{\textbf{\insertblockname}}
\par}
{n
\endgroup
\medskip
}

ARTICLE This command is also available in article mode.

Inserts for these Templates

\insertblockname

Inserts the name of the current block into a template.

8.4.19 Theorem Environments

Predefined Templates

\beamertemplatetheoremssimple

Causes the theorem head and text to be directly passed to the block or exampleblock environment.
All font specifications for theorems are ignored.

\beamertemplatetheoremsunnumbered

Causes theorems to be typeset as follows: The font specification for the body is honored, the font
specification for the head is ignored. No theorem number is printed. This is the default.

\beamertemplatetheoremsnumbered
Like \beamertemplatetheoremsunnumbered, except that the theorem number is printed for environ-
ments that are numbered.

\beamertemplatetheoremsamslike

This causes theorems to be put in a block or exampleblock, but to be otherwise typeset as is normally
done in amsthm. Thus the head font and body font depend on the setting for the theorem to be typeset
and theorems are numbered.

101

Template Installation Commands

\usetheoremtemplate{(block beginning template)}{(block end template)}

BEAMER Whenever an environment declared using the command \newtheorem is to be typeset, the (block

beginning template) is inserted at the beginning and the (block end template) at the end. If there is a over-
lay specifciation when an environment like theorem is used, this overlay specifciation will directly follow
the (block beginning template) upon invocation. This is even true if there was an optional argument to
the theorem environment. This optional argument is available via the insert \inserttheoremaddition.

Numerous inserts are available in this template, see below.

Before the template starts, the font is set to the body font prescribed by the environment to be typeset.

Ezample: The following typesets theorems like amsthm:

\usetheoremtemplate{\begin{\inserttheoremblockenv}
iV
\inserttheoremheadfont
\inserttheoremname
\inserttheoremnumber
\ifx\inserttheoremaddition\@empty\else\ (\inserttheoremaddition)\fi%,
\inserttheorempunctuation
Y
H\end{\inserttheoremblockenv}}

Ezample: In the following example, all font “suggestions” for the environment are suppressed or ignored;
and the theorem number is suppressed.

\usetheoremtemplate{’
\normalfonty% ignore body font
\begin{\inserttheoremblockenv}
{h
\inserttheoremname
\ifx\inserttheoremaddition\@empty\else\ (\inserttheoremaddition)\fi%,
Y
H\end{\inserttheoremblockenv}}

ARTICLE This command is not available in article mode.

Inserts for these Templates

\inserttheoremblockenv
This will normally expand to block, but if a theorem that has theorem style example is typeset, it will
expand to exampleblock. Thus you can use this insert to decide which environment should be used
when typesetting the theorem.

\inserttheoremheadfont
This will expand to a font chainging command that switches to the font to be used in the head of the
theorem. By not inserting it, you can ignore the head font.

\inserttheoremname

This will expand to the name of the environment to be typeset (like “Theorem” or “Corollary”).

\inserttheoremnumber
This will expand to the number of the current theorem preceeded by a space or to nothing, if the current
theorem does not have a number.

\inserttheoremaddition
This will expand to the optional argument given to the environment or will be empty, if there was no
optional argument.

\inserttheorempunctuation

This will expand to the punctuation character for the current environment. This is usually a period.

102

8.4.20 Verse, Quotation and Quote Environments
Template Installation Commands

\usetemplateverse{(block beginning template)}{(block end template)}

In a verse environment, the (block beginning template) is inserted before the verse, the (block end
template) after the verse. The margins are not setup in these templates; this is done in the verse
environment and cannot be changed.

Example: \usetemplateverse{\rmfamily\itshape}{}

\usetemplatequotation{(block beginning template)}H (block end template)}

Both in quotation and in quote environments, the (block beginning template) is inserted before the
quotation, the (block end template) after the quotation. As for verses, the margins are not setup in
these templates and cannot be changed.

Ezample: \usetemplatequotation{\itshape}{}
8.4.21 Typesetting Notes
Predefined Templates

\beamertemplatenoteplain

Causes all note pages to contain only the note text.
\beamertemplatenotecompress

Causes the “routing information” at the top of a note to be smaller.
Template Installation Commands

\usetemplatenote{(note template)}

Each note is typeset by inserting the (note template). The template should contain a mentioning of the
insert \insertnote, which will contain the note text.

Example: \usetemplatenote{\tiny\insertnote}
Inserts for these Templates

\insertnote

Inserts the text of the current note into the template.

\insertslideintonotes{(magnification)}

Inserts a “mini picture” of the last slide into the current note. The slide will be scaled by the given
magnification.

FEzxample: \insertslideintonotes{0.25}

This will give a mini slide whose width and height are one fourth of the usual size.

9 Tips and (Dirty) Tricks

The aim of this section is to collect some hints and tricks that make use of the basic BEAMER-class concepts.

103

9.1 Piecewise Uncovering
9.1.1 TUncovering an Enumeration Piecewise

A common usage of overlays is to show a list of points in an enumeration in a piecewise fashion. The easiest
and most flexible way to do this is the following;:

\begin{itemize}
\item<1-> First point.
\item<2-> Second point.
\item<3-> Third point.
\end{itemize}

The advantage of this approach is that you retain total control over the order in which items are shown.
By chaning, for example, the last specification to <2->, you can have the last two points uncovered at the
same time.

A disadvantage of the approach is that you will have to renumber everything if you add a new item. This
is usually not such a big problem, but it can be a nuiseance.

To automize the uncovering, you can use the following code:

\begin{itemizel} [<+->]
\item First point.
\item Second point.
\item Third point.
\end{itemize}

The effect of the [<+->] is to install a default overlay specification, see the definition of itemize for
details.

Now, suppose you wish the second and third point to be shown at the same time. You could achieve
this by adding the specificaiton <2-> to either the second or third \item command. However, then you still
have to do some renumbering if you add a new item at the beginning. A better, though more cumbersome,
approach is to decrease the counter beamerpause before the last item:

\begin{itemizel} [<+->]

\item First point.

\item Second point.
\addtocounter{beamerpause}{-1}

\item Third point.

\end{itemize}

This does not look so nice, but it works. Also, you might wish to build your own macros based on these
ideas (like an itemstep environment or a \itemlikeprevious command).

9.1.2 Hilighting the Current Point in an Enumeration

If you uncover an enumeration piecewise, it is sometimes a good idea to hilight the last uncovered point to
draw the audience’s attention to it. This is best achieved as follows:

\begin{itemize}

\item<1-| alert@1> First point.
\item<2-| alert@2> Second point.
\item<3-| alert@3> Third point.
\end{itemize}

or
\begin{itemize} [<+-| alert@+>]
\item First point.
\item Second point.
\item Third point.

\end{itemize}

Note that this will draw the little item symbol also in red.

104

9.1.3 Changing Symbol Before an Enumeration

When uncovering a list of tasks or problems, you may desire that the symbol in front of the last uncovered
symbol is, say, an ballot X, while for the previous items it is a check mark (you’ll find these characters in
some Dingbats fonts).

The best way to achieve this is to implement a new action environment. If this action is activated, it
temporarily changes the item symbol template to the other symbol:

\newenvironment{ballotenv}

{N\only{%
\useitemizeitemtemplate{code for showing a ballot}}
\usesubitemizeitemtemplate{code for showing a smaller ballotl}/,
\usesubsubitemizeitemtemplate{code for showing a smaller ballot}}}

{3

\useitemizeitemtemplate{code for showing a check mark}
\usesubitemizeitemtemplate{code for showing a smaller check mark}
\usesubsubitemizeitemtemplate{code for showing a smaller check mark}

The effect of the code is to install a check mark as the default template. If the action ballot is now
requested for some item, this template will temporarily be replaced by the ballot templates.

Note that the ballotenv is invoked with the overlay specification given for the action directly following
it. This causes the \only to be invoked exactly for the specified overlays.

Here are example usages:

\begin{itemize}

\item<1-| ballot@l> First point.
\item<2-| ballot@2> Second point.
\item<3-| ballot@3> Third point.
\end{itemize}

and

\begin{itemizel} [<+-| ballot@+>]
\item First point.

\item Second point.

\item Third point.
\end{itemize}

In the following example, more and more items become “checked” from slide to slide:

\begin{itemize}[<ballot@+-| visible@1-,+(1)>]
\item First point.

\item Second point.

\item Third point.

\end{itemize}

The important point is ballot@+. The funny visible@1-,+(1) has the following effect: Although it has
no effect with respect to what is shown (after all, it applies to all slides), it ensures that in the enumeration
the slide number 4 is mentioned. Thus there will also be a slide in which all three points are checked.

9.1.4 Uncovering Tagged Formulas Piecewise

Suppose you have a three line formula as the following:

\begin{align}
A &= B \\
&= C \\
&= D
\end{align}

Uncovering this formula line-by-line is a little tricky. A first idea is to use the \pause or \onslide
commands. Unfortunately, these do not work since align internally reprocesses its input several times,

105

which messes up the delicate internals of the commands. The next idea is the following, which works a little
better:

\begin{align}

A &= B \\
\uncover<2->{&= C \\}
\uncover<3->{&= D}

\end{align}

Unfortunately, this does not work in the presence of tags (so it works for the align* environment). What
happens is that the tag of the last line is shown on all slides. The problem here is that the tag is created
when \\ is encountered or when \end{align} is encountered. In the last line these are already “behind”
the \uncover.

To solve this problem, you can add an empty line without a tag and then insert a negative vertical skip
to undo the last line:

\begin{align}

A &= B \\
\uncover<2->{&= C \\}
\uncover<3->{&= D \\}
\notag

\end{align}

\vskip-1.5em

9.1.5 Uncovering a Table Linewise

When you wish to uncover a table line-by-line, you will run into all sorts of problems if there are vertical
and horizontal lines in the table. The reason is that the first vertical line at the left end is drawn before the
line is even read (and thus, in particular, before any \onslide command can be read). However, placing a
\pause or \uncover at the end of the line before is also not helpful since it will then suppress the horizontal
line below the last uncovered line.

A possible way to solve this problem is not to use either horizontal or vertical lines. Instead, colouring the
lines using the colortbl package is a good alternative to structure the table. Here is an optically pleasing
example, where the table is uncovered line-wise:

\rowcolors[]{1}{blue!20}{blue!10}
\begin{tabular}{1!{\vrule}cccc}
Class & A & B & C & D \\\hline

X & 1 & 2 & 3 & 4 \pause\\

Y & 3 & 4 & 5 & 6 \pause\\

Z &5 &6 &7 &8
\end{tabular}

By using \onslide instead of \pause, you can get more fine-grained control over which line is shown on
which slide.

9.1.6 Uncovering a Table Columnwise

The same problems as for uncovering a table linewise arise for uncovering it columnwise.

Once more, using the colortbl package offers a solution. In the following example, the tabular header
is used to insert \onslide commands, one for each column, that cover the entries in the colomn from a
certain slide on. At the end of the last column, the \onslide without a specification ensures that the first
column on the next row is once more shown normally.

Inserting a horizontal line is tricky since it will protrude over the full width of the table also in the covered
version. The best idea is just not to use horizontal bars.

\rowcolors[]{1}{blue!20}{blue!10}
\begin{tabular}{1!{\vrule}c<{\onslide<2->}c<{\onslide<3->}c<{\onslide<4->}c<{\onslide}c}
Class & A & B & C & D \\

X &1 &2&3&4\\
Y &3 &4 &5 & 6 \\
Z &5 &6 &7 &8
\end{tabular}

106

10 License: The GNU Public License, Version 2

The BEAMER class is distributed under the GNU public license, version 2. In detail, this means the following
(the following text is copyrighted by the Free Software Foundation):

10.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

10.2 Terms and Conditions For Copying, Distribution and Modification

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

107

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

(¢) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

108

10.

You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However, nothing else

grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

. Each time you redistribute the Program (or any work based on the Program), the recipient automati-

cally receives a license from the original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to this
License.

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

. If the distribution and/or use of the Program is restricted in certain countries either by patents or by

copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

109

10.3 No Warranty

10. Because the program is licensed free of charge, there is no warranty for the program, to the extent

11.

permitted by applicable law. Except when otherwise stated in writing the copyright holders and/or
other parties provide the program “as is” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the program is with you. Should the
program prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event unless required by applicable law or agreed to in writing will any copyright holder, or
any other party who may modify and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or consequential damages arising out of the
use or inability to use the program (including but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility of such damages.

110

	Introduction
	Getting Started with the Beamer Class and LaTeX/pdfLaTeX
	Getting Started with the Beamer Class and L.25emYX
	How to Read this User's Guide

	Installation and Compatibility
	Installation
	Installing Prebundled Packages Like Debian or Red Hat Packages
	Temporary Installation
	Installation in a texmf Tree
	Updating the Installation
	Testing the Installation

	Compatibility with Other Packages
	Emulation
	Prosper and HA-Prosper
	Seminar

	Workflow
	Step Zero: Know the Time Constraints
	Step One: Setup the Files
	Step Two: Structure You Presentation
	Step Three: Creating a PDF or PostScript File
	Creating PDF
	Creating PostScript

	Step Four: Create Frames
	Guidelines on What to Put on a Frame
	Guidelines on Titles
	Guidelines on the Body Text
	Guidelines on Graphics
	Guidelines on Colors
	Guidelines on Animations and Special Effects
	Ways of Improving Compilation Speed

	Step Five: Test Your Presentation
	Step Six: Optionally Create a Handout or an Article Version

	Frames and Overlays
	The Concept of Overlay Specifications
	The General Concept
	Mode Specifications
	Action Specifications
	Incremental Specifications

	Frames
	Frame Creation
	Components of a Frame
	Restricting the Slides of a Frame
	Verbatim Commands and Listings inside Frames

	Creating Overlays
	The Pause Commands
	Commands with Overlay Specifications
	Environments with Overlay Specifications
	Dynamically Changing Text

	Making Commands and Environments Overlay-Specification-Aware

	Structuring a Presentation
	Global Structure of Presentations
	Commands for Creating the Global Structure
	Adding a Title Page
	Adding Sections and Subsections
	Adding Parts
	Splitting a Course Into Lectures
	Adding a Table of Contents
	Adding a Bibliography
	Adding an Appendix
	Adding Hyperlinks and Buttons

	Navigation Bars and Symbols
	Using the Navigation Bars
	Using the Navigation Symbols

	Command for Creating the Local Structure
	Itemizations, Enumerations, and Descriptions
	Hilighting
	Block Environments
	Theorem Environments
	Framed Text
	Figures and Tables
	Splitting a Frame into Multiple Columns
	Positioning Text and Graphics Absolutely
	Verse, Quotations, Quotes
	Footnotes

	Graphics, Colors, Animations, and Special Effects
	Graphics
	Including External Graphic Files
	Inlining Graphic Commands

	Color Management
	Colors of Main Text Elements
	Average Background Color
	Transparency Effects

	Animations
	Using an External Viewer
	Animations Created by Showing Slides in Rapid Succession

	Slide Transitions

	Managing Non-Presentation Versions and Material
	Creating Handouts
	Creating Transparencies
	Adding Notes
	Specifying Note Contents
	Specifying Which Notes and Frames Are Shown
	Changing the Appearance of Notes

	Creating an Article Version
	Starting the Article Mode
	Workflow
	Including Slides from the Presentation Version in the Article Version

	Details on Modes

	Customization
	Fonts
	Serif Fonts and Sans-Serif Fonts
	Fonts in Mathematical Text
	Font Families
	Font Sizes
	Font Encodings

	Margin Sizes
	Themes
	Templates
	Introduction to Templates
	Title Page
	Part Page
	Frames
	Background
	Table of Contents
	Bibliography
	Frame Titles
	Head Lines and Foot Lines
	Side Bars
	Buttons
	Navigation Bars
	Navigation Symbols
	Footnotes
	Captions
	Lists (Itemizations, Enumerations, Descriptions)
	Hilighting Commands
	Block Environments
	Theorem Environments
	Verse, Quotation and Quote Environments
	Typesetting Notes

	Tips and (Dirty) Tricks
	Piecewise Uncovering
	Uncovering an Enumeration Piecewise
	Hilighting the Current Point in an Enumeration
	Changing Symbol Before an Enumeration
	Uncovering Tagged Formulas Piecewise
	Uncovering a Table Linewise
	Uncovering a Table Columnwise

	License: The GNU Public License, Version 2
	Preamble
	Terms and Conditions For Copying, Distribution and Modification
	No Warranty

